Полупроводники. Собственная проводимость полупроводников. Собственная проводимость полупроводников Собственная электрическая проводимость полупроводников зависит от

Стильные 20.01.2022
Стильные

ЭЛЕКТРОФИЗИЧЕСКИЕ СВОЙСТВА ПОЛУПРОВОДНИКОВ

Цель. Познакомить курсантов с процессом получения носителей зарядов в полупроводниках и методами управления их концентрацией и движением в электрических и магнитных полях .

План

1. Контактные и поверхностные явления в полупроводниках.

2. Внутренняя структура полупроводников.

3. Собственная и примесная проводимость полупроводников.

4. Температурная зависимость проводимости примесных полупроводников.

5. Формирование контакта полупроводник - полупроводник. Электронно- дырочный p-n- переход.

6. Свойства p-n- перехода при наличии приложенного внешнего напряжения.

7. Вольтамперная характеристика p-n- перехода, температурные и частотные свойства p-n- перехода.

8. Туннельный эффект. Переход Шоттки. Их свойства.

С точки зрения зонной теории, к полупроводникам относятся вещества, ширина запрещенной зоны которых не превосходит 3 эВ. Важнейшим свойством и признаком полупроводников является зависимость их от внешних условий: температуры, освещенности, давления, внешних полей и т.п. Характерная особенность полупроводников заключается в уменьшении их удельного сопротивления с увеличением температуры.

Наиболее широкое применение в полупроводниковой технике получили германий , кремний , селен , а также полупроводниковые соединения типа арсенид галлия, карбид кремния, сульфид кадмия и др.

Для полупроводников характерно кристаллические строение, т.е. закономерное и упорядоченное расположение их атомов в пространстве. В кристаллах связанные между собой атомы располагаются строго определенным образом и на одинаковых расстояниях друг от друга, в результате чего образуется своеобразная объемная решетка из атомов, которую принято называть кристаллической решеткой твердого тела .

Между атомами кристаллической решетки существуют связи. Они образуются валентными электронами, которые взаимодействуют не только с ядром своего атома, но и с соседними. В кристаллах германия, кремния связь между двумя соседними атомами осуществляется двумя валентными электронами - по одному от каждого атома. Такая связь между атомами называется двухэлектронной или ковалентной.

Характерной особенностью ковалентных связей заключается в том, что при их образовании электроны связи принадлежат уже не одному, а сразу обоим, связанным между собою атомам, т.е. являются для них общими.

В результате внешняя орбита каждого из атомов имеет как бы по восемь электронов, и становиться полностью заполненной. Кристаллическая решетка, в которой каждый электрон внешней орбиты связан ковалентными связями с остальными атомами вещества, является идеальной. В таком кристалле все валентные электроны прочно связаны между собой и свободных электронов, которые могли бы участвовать в переносе зарядов, нет . Такую кристаллическую решетку имеют все химически чистые беспримесные полупроводники при температуре абсолютного нуля (- 273?С). В этих условиях полупроводники обладают свойствами идеальных изоляторов.


Собственная проводимость полупроводников

Под действием внешних факторов некоторые валентные электроны атомов кристаллической решетки приобретают энергию, достаточную для освобождения от ковалентных связей. Так, при температурах выше абсолютного нуля атомы твердого тела колеблются около узлов кристаллической решетки. Чем выше температура, тем больше амплитуда колебаний. Время от времени энергия этих колебаний сообщается какому либо электрону, в результате чего его полная энергия оказывается достаточной для перехода из валентной зоны в зону проводимости.

При освобождении электрона из ковалентной связи в последней возникает как бы свободное место, обладающее элементарным положительным зарядом, равным по абсолютной величине заряду электрона. Такое освободившееся в электронной связи место условно назвали дыркой , а процесс образования пары электрон - дырка получил название генерации зарядов . Дырка обладает положительным зарядом, поэтому она может присоединить к себе электрон соседней заполненной ковалентной связи. В результате этого восстанавливается одна связь (этот процесс называют рекомбинацией ) и разрушается соседняя или, другими словами заполняется одна дырка и одновременно с этим возникает новая в другом месте. Такой генерационно-рекомбинационный процесс непрерывно повторяется, и дырка, переходя от одной связи к другой, будет перемещаться по кристаллу, что равносильно перемещению положительного заряда, равного по величине заряду электрона.

Различают несколько видов рекомбинации носителей в полупроводниках. В самом простом случае рекомбинация может рассматриваться как прямой переход электрона из зоны проводимости в валентную зону на имеющийся там свободный уровень (рис. 2.8, а). Разность энергии при этом выделяется в виде кванта электромагнитного излучения либо передается кристаллической решетке в виде механических колебаний.

Другой возможный путь рекомбинации связан с поэтапным переходом электрона через запрещенную зону: вначале электрон из зоны проводимости переходит на некоторый промежуточный уровень, расположенный внутри запрещенной зоны, а затем уже с этого уровня переходит в валентную зону (рис. 2.8, б). Промежуточный уровни, получившие название центров рекомбинации, или ловушек, могут появиться, если в кристаллической решетке имеются дефекты, обусловленные тепловым возбуждением атомов, наличием примесей, несовершенством поверхности полупроводника, воздействие на полупроводник частиц с большой энергией (β- лучей или α - частиц).

Наличие в полупроводнике центров рекомбинации позволяет резко уменьшить время жизни носителей зарядов, что необходимо для создания быстродействующих полупроводниковых приборов.

При отсутствии внешнего электрического поля электроны и дырки перемещаются в кристалле хаотически вследствие теплового движения. В этом случае ток в полупроводнике не возникает. Если же на кристалл действует электрическое поле, движение дырок и электронов становиться упорядоченным и в кристалле возникает электрический ток. Таким образом, проводимость полупроводника обусловлена перемещением, как свободных электронов, так и дырок.

В первом случае носители зарядов отрицательны (негативны ), во втором - положительны (позитивны ). Соответственно различают два вида проводимости полупроводников - электронную, или проводимость типа n (от слова negative - отрицательный), и дырочную , или проводимость типа p (от слова positive - положительный).

В химически чистом кристалле полупроводника число дырок всегда равно числу свободных электронов и электрический ток в нем образуется в результате одновременного переноса зарядов обоих знаков. Такая электронно-дырочная проводимость называется собственной проводимостью полупроводника . При этом ток в полупроводнике всегда равен сумме электронного и дырочного токов.

Определение 1

В полупроводниках основная зона разделена с зоной возбужденных уровней конечным интервалом энергий ∆ E . У проводника она получила название валентной , а зона возбужденный состояний – зоной проводимости .

Если T = 0 К, то валентная зона заполняется целиком. В этом случае, зона проводимости свободна. Отсюда следует, что вблизи абсолютного нуля полупроводники не способны проводить ток. Отличие диэлектриков и полупроводников состоит в ширине запрещенной зоны ∆ E . Диэлектриками считают полупроводники при ∆ E > 2 э В.

Собственная и примесная проводимость полупроводников

Примечание 1

Если температура увеличивается, электроны начинают производить обмен энергии с ионами кристаллической решетки. Это может стать причиной обретения добавочной кинетической энергии ≈ k T . Ее количества достаточно для перевода некоторой части электронов в зону проводимости. Там они способны проводить ток.

Определение 2

В валентной зоне освобождаются квантовые состояния, которые электронами не заняты. Эти состояния называют дырками . Они являются носителями тока.

Электроны способны совершать квантовые переходы в незаполненные состояния. Заполненные состояния в этом случае освобождаются, то есть становятся дырками. В результате чего можно наблюдать появление равновесной концентрации дырок.

При отсутствии внешнего поля ее значение одинаковое по всему объему проводника. Квантовый переход сопровождается его перемещением против поля. Он способен уменьшить значение потенциальной энергии системы. Переход, который связан с перемещением в направлении поля, способен увеличить потенциальную энергию системы. При наличии преобладания количества переходов против поля над переходами по полю через полупроводник начнет протекать ток по движению приложенного электрического поля. Незамкнутый полупроводник характеризуется течением тока до тех пор, пока электрическое поле не будет компенсировать внешнее. Конечный результат такой же, как если бы в качестве носителей тока были не электроны, а положительно заряженные дырки. Отсюда следует, что различают два вида проводимости полупроводников: электронная и дырочная.

Носителя тока в металлах и полупроводниках считаются электроны, а дырки введены формально. Дырки в качестве положительно заряженных частиц не существует. Но перемещение в электрическом поле такое же, как и при классическом рассмотрении положительно заряженных частиц. Небольшая концентрация электронов в зоне проводимости и дырки в валентной зоне позволяют применять классическую статистику Больцмана.

Примечание 2

Дырочная и электронная проводимости не связаны с наличием примесей. Ее называют собственной электропроводностью полупроводников.

Если имеется идеально чистый проводник без примесей, то каждому освобожденному электрону при помощи теплового движения или света соответствовало бы образование одной дырки, иначе говоря, количество электронов и дырок, участвующих в создании тока, было бы одинаковое.

Существование идеально чистых полупроводников невозможно, поэтому при необходимости их создают искусственным путем. Даже наличие малого количества примесей способно повлиять на изменение свойств полупроводника.

Примесная проводимость полупроводников

Определение 3

Электропроводность полупроводников, вызванная наличием примесей атомов других химических элементов, называют примесной электрической проводимостью .

Небольшое их количество способно существенно влиять на увеличение проводимости. В металлах происходит обратное явление. Примеси способствуют уменьшению проводимости металлов.

Увеличение проводимости с примесями объясняется тем, что происходит появление дополнительных энергетических уровней в полупроводниках, находящихся в запрещенной зоне полупроводника.

Донорные и акцепторные примеси

Пусть дополнительные уровни в запрещенной зоне появляются около нижнего края зоны проводимости. Если интервал, отделяющий дополнительные уровни энергии от зоны проводимости, мал при сравнении с шириной запрещенной зоны, то произойдет увеличение числа электронов в зоне проводимости, значит, сама проводимость полупроводника возрастет.

Определение 4

Примеси, которые перемещают электроны в зону проводимости, называют донорами или донорными примесями. Дополнительные энергоуровни получили название донорных уровней .

Определение 5

Полупроводники с донорными примесями – это электронные или полупроводники n -типа.

Определение 6

Пусть с введением примеси возникают добавочные уровни около верхнего края валентной зоны. В этом случае электроны из этой зоны переходят на добавочные уровни. Валентная зона характеризуется появлением дырок, так как появляется дырочная электропроводность проводника. Примеси такого рода получили название акцепторных . Дополнительные уровни, располагаемые в них, называют акцепторными .

Определение 7

Полупроводники с акцепторными примесями получили название дырочных или полупроводников p -типа . Имеют место на существование смешанные полупроводники.

Вид проводимости, которым обладает полупроводник, определяют по знаку эффекта Холла.

Определение 8

Легирование – это процесс введение примесей. Если примесный уровень обладает высокой концентрацией, то происходит их расщепление. Перекрытие границ соответствующих энергетических зон считается результатом процесса.

Пример 1

Объяснить, к какому типу примеси относят атомы мышьяка, бора, находящихся в кристаллической решетке кремния.

Решение

Кремний является четырехвалентным атомом, значит, атом содержит 4 электрона. Мышьяк пятивалентен, то есть содержит 5 , причем пятый из которых отщепляется по причине наличия теплового движения. Положительный ион мышьяка вытесняет из решетки один из атомов кремния и встает на его место. Происходит возникновение электрона проводимости между узлами решетки. Отсюда следует, что мышьяк считается донорной примесью для кремния.

При рассмотрении бора в качестве примеси для кремния видно, что атом бора имеет наружную оболочку, состоящую из трех электронов. Атом бора захватывает четвертый электрон из соседнего места, находящегося в кристалле кремния. Именно там происходит появление дырки. Отрицательный ион бора, появившийся в ней, вытесняет атом кремния из кристаллической решетки и занимает его место. Говорят о возникновении в нем дырочной проводимости. Бор считается акцепторной примесью.

Ответ: мышьяк – донорная примесь, бор – акцепторная.

Пример 2

Даны термоэлементы с протеканием тока от металла к полупроводнику и наоборот. Объяснить, почему это происходит.

Решение

По условию, электронная и дырочная проводимость проходит в горячем спае. Это объясняется тем, что на конце электронного полупроводника с высокой температурой скорость электронов намного больше, чем в холодном. Отсюда следует, что электроны имеют возможность проходить от горячего конца к холодному до возникновения по причине перераспределения зарядов электрического поля и не останавливать поток диффундирующих электронов.

Только после установления равновесного состояния горячему концу, который потерял все электроны, соответствуют положительные заряды, а холодному – отрицательные. Можно сделать вывод, что имеется разность потенциалов между горячим и холодным концами с положительным знаком.

Дырочный полупроводник характеризуется обратным процессом. Диффузия идет от горячего конца к холодному, причем первый из них обладает отрицательным зарядом, а холодный – положительным. Получаем, что разности потенциалов имеют отрицательное значение, в отличие от электронного полупроводника.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Полупроводниками являются твердые тела, которые при T = 0K имеют полностью занятую электронами валентную V зону, отделенную от зоны проводимости C сравнительно узкой запрещенной зоной . Своим названием они обязаны тому, что их проводимость меньше электропроводности металлов и больше электропроводности диэлектриков.

Различают собственные и примесные полупроводники . Собственными полупроводниками являются химически чистые полупроводники (например, Ge, Se), а их проводимость называется собственной проводимостью .

При T = 0K и отсутствии внешнего возбуждения

собственные полупроводники ведут себя как диэлектрики. При повышении температуры электроны с верхних уровней валентной зоны V могут быть переброшены на нижние уровни зоны проводимости C . При наложении на кристалл внешнего электрического поля они перемещаются против поля и создают электрический ток. Проводимость, обусловленная электронами, называется электронной проводимостью или проводимостью n -типа (negative).

В результате переходов электронов в зону проводимости, в валентной зоне возникают вакантные состояния , получившие название дырок (hole, показаны на рисунке белыми кружками). Во внешнем поле на это вакантное место может переместиться соседний валентный электрон, при этом дырка "переместится" на его место. В результате дырка, так же как и перешедший в зону проводимости электрон, будет двигаться по кристаллу, но в направлении противоположном движению электрона. Формально это выглядит так, как если бы по кристаллу двигалась частица с положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квазичастицами - дырками, называется дырочной проводимостью или p -проводимостью (positive).

В собственных полупроводниках наблюдается, таким образом, электронно-дырочный механизм проводимости.

Примесная проводимость полупроводников.

Проводимость полупроводников , обусловленная примесями (атомы посторонних элементов), тепловыми (пустые узлы или атомы в междоузлии) и механическими (трещины, дислокации) дефектами, называется примесной проводимостью , а сами полупроводники - примесными полупроводниками .

Полупроводники называются электронными (или полупроводниками n -типа ) если проводимость в них обеспечивается избыточными электронами примеси, валентность которой на единицу большевалентности основных атомов .

Например, пятивалентная примесь мышьяка (As) в

матрице четырехвалентного германия (Ge) искажает поле решетки, что приводит к появлению в запрещенной зоне энергетического уровня D валентных электронов мышьяка, называемого примесным уровнем . В данном случае этот уровень располагается от дна зоны проводимости на расстоянии = 0,013эВ < kT, поэтому уже при обычных температурах тепловая энергия достаточна для переброски электронов с примесного уровня в зону проводимости.

Примеси, являющиеся источниками электронов называются донорами донорными уровнями .

Таким образом, в полупроводниках n -типа (донорная примесь) реализуется электронный механизм проводимости.

Полупроводники называются дырочными (или полупроводниками p -типа ) если проводимость в них обеспечивается дырками, вследствие введения примеси, валентность которой на единицу меньше валентностиосновных атомов .

Например, введение трехвалентной примеси бора (B) в матрицу четырехвалентного германия (Ge) приводит к появлению в запрещенной зоне примесного энергетического уровня A не занятого электронами. В данном случае этот уровень располагается от верхнего края валентной зоны на расстоянии = 0,08эВ. Электроны из валентной зоны могут переходить на примесный уровень, локализуясь на атомах бора. Образовавшиеся в валентной зоне дырки становятся носителями тока.

Примеси, захватывающие электроны из валентной зоны, называются акцепторами , а энергетические уровни этих примесей - акцепторными уровнями . В полупроводниках p -типа (акцепторная примесь) реализуется дырочный механизм проводимости.

Таким образом, в отличие от собственной проводимости, примесная проводимость обусловлена носителями одного знака.

Фотопроводимость полупроводников.

Фотопроводимость полупроводников - увеличение электропроводности полупроводников под действием электромагнитного излучения - может быть связана со свойствами как основного вещества, так и содержащихся в нем примесей.

Собственная фотопроводимость . Если энергия фотонов больше ширины запрещенной зоны (h ν ≥ ΔE ) , электроны могут быть переброшены из валентной зоны в зону проводимости (а), что приведет к появлению добавочных (неравновесных) электронов (в зоне проводимости) и дырок (в валентной зоне). Собственная фотопроводимость обусловлена как электронами, так и дырками.

Примесная фотопроводимость . Если полупроводник содержит примеси, то фотопроводимость может возникать и при h ν < ΔE : при донорной примеси фотон должен обладать энергией h ν ≥ Δ , при акцепторной примеси h ν ≥ Δ . При поглощении света примесными центрами происходит переход электронов с донорных уровней в зону проводимости в случае полупроводника n -типа (рис.(б)) или из валентной зоны на акцепторные уровни в случае полупроводника p -типа (рис.(в)).

Примесная фотопроводимость для полупроводников n -типа - чисто электронная , для полупроводников p -типа - чисто дырочная .

Таким образом, если h ν ≥ ΔE для собственных полупроводников, и h ν ≥ Δ для примесных полупроводников, то в полупроводнике возбуждается фотопроводимость (здесь Δ - энергия активации примесных атомов).

Отсюда можно определить красную границу фотопроводимости – максимальную длину волны, при которой еще фотопроводимость возбуждается: для собственных и примесных полупроводников, соответственно.

Наряду с поглощением, приводящим к появлению фотопроводимости, может иметь место поглощение света с образованием экситонов , которое не приводит к фотопроводимости. Экситон – это квазичастица, представляющая собой связанную пару электрон–дырка, которая может свободно перемещаться в кристалле. Экситоны возбуждаются фотонами с энергиями меньшими энергии запрещенной зоны и могут быть наглядно представлены в виде модели спаренных электрона (e) и дырки (h) , движущихся вокруг общего центра масс, которым не хватило энергии, чтобы оторваться друг от друга (так называемый экситон Ванье–Мотта ). В целом экситон электрически нейтрален, поэтому экситонное поглощение света не приводит к увеличению фотопроводимости.

Люминесценция твердых тел.

Люминесценцией называется излучение, избыточное при данной температуре над тепловым излучением тела и имеющее длительность, бóльшую периода световых колебаний.

Вещества, способные под действием различного рода возбуждений светиться, называются люминофорами .

В зависимости от способов возбуждения различают: фотолюминесцен-цию (под действием света), рентгенолюминесценцию (под действием рентгеновского излучения), катодолюминесценцию (под действием электронов), радиолюминесценцию (при возбуждении ядерным излучением, например γ -излучением, нейтронами, протонами), хемилюминесценцию (при химических превращениях), триболюминесценцию (при растирании или раскалывании некоторых кристаллов).

По длительности свечения условно различают: флуоресценцию (t ≤ с) и фосфоресценцию - свечение, продолжающееся заметный промежуток времени после прекращения возбуждения.

Уже в первых количественных исследованиях люминесценции было сформулировано правило Стокса : длина волны люминесцентного излучения всегда больше длины волны света, возбудившего его.

Твердые тела, представляющие собой эффективно люминесцирующие искусственно приготовленные кристаллы с чужеродными примесями, получили название кристаллофосфоров .

На примере кристаллофосфоров рассмотрим механизмы возникновения фосфоресценции с точки зрения зонной теории твердых тел. Между валентной зоной и зоной проводимости кристаллофосфора располагаются примесные уровни активатора A . Для возникновения длительного свечения кристаллофосфор должен содержать центры захвата, или ловушки для электронов (, ). Длительность процесса миграции электрона до момента рекомбинации его с ионом активатора определяется временем пребывания электронов в ловушках.

Контакт электронного и дырочного полупроводников (p-n- переход).

Граница соприкосновения двух полупроводников, один из которых имеет электронную, а другой - дырочную проводимость, называется электронно-дырочным переходом (или p-n- переходом ).

p-n- Переход обычно создается при специальной обработке кристаллов, например, при выдержке плотно прижатых кристаллов германия (n -типа) и индия при 500°С в вакууме (а) атомы индия диффундируют на некоторую глубину в германий, образуя промежуточный слой германия, обогащенного индием, проводимость которого p -типа (б).

Электроны из n -полупроводника, где их концентрация выше, будут диффундировать в p -полупроводник. Диффузия дырок происходит в обратном направлении. В n -полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В p -полупроводнике из-за

Ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов. Эти объемные заряды создают запирающий равновесный контактный слой , препятствующий дальнейшему переходу электронов и дырок.

Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если направление внешнего поля

Совпадает с направлением поля контактного слоя (а), то запирающий слой расширяется и его сопротивление возрастает - такое направление называется запирающим (обратным). Если направление внешнего поля противоположно полю контактного слоя (б), то перемещение электронов и дырок приведет к сужению контактного слоя и его сопротивление уменьшится - такое направление называется пропускным (прямым) .

Полупроводниковые диоды и триоды (транзисторы).

Односторонняя (вентильная) проводимость p-n- перехода используется в полупроводниковых диодах , содержащих один p-n- переход. По конструкции они делятся на точечные и плоскостные .

В точечных диодах p-n- переход образуется в точке касания металлического контакта 1 и полупроводника 2 (например, в точечном германиевом диоде диффузия алюминия в n- германий образует в германии p- слой). Технология изготовления германиевого плоскостного диода описана выше.

p-n- Переходы обладают не только прекрасными выпрямляющими свойствами, но могут быть использованы также для усиления, а если в схему ввести обратную связь, то и для генерации электрических колебаний. Приборы, предназначенные для этих целей, получили название полупроводниковых триодов или транзисторов . Изобретение транзисторов в 1949г. считается самым значительным изобретением ХХ века и было отмечено в 1956 году Нобелевской премией.

Транзисторы могут быть типа n-p-n и типа p-n-p в зависимости от

чередования областей с различной проводимостью. Для примера рассмотрим триод типа p-n-p . Рабочие "электроды" триода, которыми являются база (средняя часть транзистора), эмиттер и коллектор (прилегающие к базе с обеих сторон области с иным типом проводимости), включаются в схему с помощью невыпрямляющих контактов - металлических проводников. Между эмиттером и базой прикладывается постоянное смещающее напряжение в прямом направлении, а между базой и коллектором - постоянное смещающее напряжение в обратном направлении. Усиливаемое переменное напряжение подается на входное сопротивление , а усиленное - снимается с выходного сопротивления .

Протекание тока в цепи эмиттера обусловлено в основном движением дырок (они являются основными носителями тока) и сопровождается их "впрыскиванием" - инжекцией - в область базы. Проникшие в базу дырки диффундируют по направлению к коллектору, причем при небольшой толщине базы значительная часть инжектированных дырок достигает коллектора. Здесь дырки захватываются полем, действующим внутри перехода (притягиваются к отрицательно заряженному коллектору), вследствие чего изменяется ток коллектора. Следовательно, всякое изменение тока в цепи эмиттера вызывает изменение тока в цепи коллектора.

Прикладывая между эмиттером и базой переменное напряжение, получим в цепи коллектора переменный ток, а на выходном сопротивлении - переменное напряжение. Величина усиления зависит от свойств p-n- переходов, нагрузочных сопротивлений и напряжения батареи . Обычно , поэтому (усиление может достигать 10 000). Так как мощность переменного тока, выделяемая в , может быть больше, чем расходуемая в цепи эмиттера, то транзистор дает и усиление мощности .

Проводимость полупроводников, обусловленная основными носителями

Описание

При T= 0 K все собственные электроны полупроводника находятся в валентной зоне, целиком заполняя её (рис. 1).

Энергетическое распределение электронов в валентной зоне при нулевой температуре

Рис. 1

С повышением температуры тепловое движение "выбрасывает" в зону проводимости электроны из валентной зоны, при этом в валентной зоне остаются "пустые" состояния, которые называются дырками (рис. 2).

Энергетическое распределение электронов в валентной зоне и зоне проводимости при ненулевой температуре

Рис. 2

Собственной проводимостью полупроводников называется проводимость, обусловленная движением под действием электрического поля одинакового числа свободных электронов и дырок, образовавшихся вследствие перехода электронов полупроводника из валентной зоны в зону проводимости. В идеальном полупроводнике при собственной проводимости концентрации электронов (n i ) и дырок (p i ) равны и много меньше числа уровней в валентной зоне и зоне проводимости. Поэтому свободные электроны занимают уровни вблизи дна зоны проводимости E c , а свободные дырки - вблизи потолка валентной зоны E v (рис. 1). При этом:

n i = p i = A exp(- D E/2kT) , (1)

где A= 4,82Ч 1015 T 3/2 (m n * m p * /m 2 ) 3/4 ;

m n * , m p * - эффективные массы электрона и дырки;

m - масса электрона;

k - постоянная Больцмана;

D E - ширина запрещенной зоны полупроводника;

T - абсолютная температура (дыркам приписывается эффективная масса m p , равная по абсолютной величине эффективной массе того электрона, который занял бы это валентное состояние, но с противоположным знаком; эффективная масса электрона в валентной зоне вблизи E v отрицательна).

В общем случае эффективная масса зависит от направления движения носителя, что отражает анизотропию кристалла.

Для образования пары электрон-дырка, т.е. для возникновения собственной проводимости необходимо, чтобы температура полупроводника была отлична от нуля.

Для Ge , например (D E= 0,785 эВ), при Т= 300 К n i =p i @ 2,5Ч 1019 м-3 .

Величина собственной проводимости:

, (2)

где m n , m p - подвижности электронов и дырок, связанные с временем их свободного пробега (t n , t p ):

m n = e t n /m n * , ... m p = e t p /m p * .

При Т= 300 К

s = 2,1 Ом-1 м-1 для Ge (m n = 0,37 м2 /ВЧ с; m p = 0,18 м2 /ВЧ с);

s = 2Ч 10-4 1Ом-1 м-1 для Si (m n = 0,17 м2 /ВЧ с; m p = 0,025 м2 /ВЧ с).

Собственная проводимость наблюдается только в очень чистых (без примесей) и совершенных (без дефектов) полупроводниках, в основном при достаточно высоких температурах.

Временные характеристики

Время инициации (log to от -3 до 2);

Время существования (log tc от -3 до 15);

Время деградации (log td от -3 до 2);

Время оптимального проявления (log tk от -1 до 1).

Диаграмма:

Технические реализации эффекта

Термистор

Техническая реализация - термистор (терморезистор). В среде с температурой T находится образец собственного полупроводника, например, Ge . Измеряя зависимость проводимости образца от температуры, убеждаемся, что при охлаждении проводимось уменьшается. Если построить эту зависимость в логарифмических координатах, то видно, что она стремится к нулю при абсолютном нуле температуры.

Применение эффекта

Использующие явление собственной проводимости термисторы используются как датчики температуры. Принцип действия такого датчика основан на изменении тока в цепи датчика при нагреве вследствие явления собственной проводимости: J датчика = s (T )Ч E , где E - поле внутри полупроводника.

Литература

1. Физический энциклопедический словарь.- М., 1982.

2. Зи С. Физика полупроводниковых приборов.- М.: Мир, 1984.

Ключевые слова

  • полупроводник
  • электрон
  • дырка
  • свободный носитель заряда
  • эффективная масса
  • подвижность
  • концентрация носителей
  • энергетические зоны
  • температурная зависимость
  • проводимость

Разделы естественных наук:

Собственная проводимость

Рассмотрим квантовую теорию проводимости различных веществ. Напомним, что проводимостью называется способность носителей заряда осуществлять направленное движение согласно приложенному электрическому полю (носителей отрицательного заряда против поля, положительного заряда – по полю). В случае полупроводниковых веществ возможны два типа проводимости в зависимости от чистоты химического состава вещества.

Различают собственные и примесные полупроводники. К числу собственных относятся химически чистые полупроводники, то есть такие полупроводники, в состав которых входят атомы (или молекулы) только одного вида и отсутствуют посторонние включения. В таких полупроводниках наблюдают только собственную проводимость .

Собственная проводимость возникает при переходе электронов с верхних уровней валентной зоны в зону проводимости в случае получения им дополнительной достаточной энергии, которая равна (или несколько больше) ширине запрещенной зоны E g . Данную энергию, как уже говорилось в лекции 9, электрон может получить в результате тепловых колебаний решетки или под действием кванта света .

Рис. 12.1. Собственная проводимость полупроводника

Так как энергия тепловых колебаний, как правило, значительно меньше энергии кванта света, то какая именно энергия спровоцирует появление проводимости, зависит от ширины запрещенной зоны кристалла. Переход электрона в зону проводимости соответствует рождению двух свободных частиц : электрона, энергия которого оказывается равной одному из разрешенных значений из зоны проводимости, а также дырки, энергия которой равна одному из значений валентной зоны. Эти частицы являются носителями тока, причем вклад в проводимость вносят как электроны, так и дырки. Если приложить разность потенциалов к такому кристаллу, и электроны и дырки смогут двигаться вдоль всего образца. Это явление уже рассмотрено во второй лекции, оно называется внутренним фотоэффектом.

Можно найти электропроводность данного вещества. Для этого воспользуемся распределением электронов и дырок по энергиям (см. раздел 10). Так как электроны и дырки являются фермионами, т.е. частицами с полуцелым спином, это означает, что они подчиняются статистике Ферми-Дирака:

(12.1)

Параметр E F носит название энергии Ферми . Уровень Ферми – это виртуальный уровень, который соответствует середине между всеми занятыми и всеми свободными состояниями при условии, что тех и других имеется одинаковое количество. В идеале все свободные уровни располагаются выше уровня Ферми, все занятые – ниже. Однако в реальных кристаллах свободный уровень может оказаться ниже уровня Ферми, если выше уровня Ферми найдется занятый электроном уровень. Для металлов уровень Ферми находится в зоне проводимости. Для собственных (т.е. чистых) полупроводников энергия Ферми при комнатной температуре соответствует приблизительно середине запрещенной зоны, следовательно:

(12.2)

где E g – ширина запрещенной зоны.

Количество электронов, перешедших в зону проводимости (равно как и дырок, оставшихся в валентной зоне), будет пропорционально вероятности того, что электрон обладает соответствующей энергией:

Проводимость, очевидно, зависит от числа свободных носителей тока, то есть оказывается также пропорциональна функции f(E) :

(12.4)

или (12.5)

Видно, что электропроводность собственных полупроводников экспоненциально растет с температурой (рис. 12.2). Измерив электропроводность полупроводника при различных температурах, можно определить ширину запрещенной зоны. В полулогарифмических координатах (как на рис. 12.2) тангенс угла наклона прямой будет пропорционален E g .

Рис. 12.2. Зависимость электропроводности

собственного полупроводника от температуры

Напомним, что электропроводность металлов линейно уменьшается с ростом температуры. Такое отличие объясняется тем, что природа проводимости в полупроводниках и металлах принципиально различна.

Примесная проводимость

Электрические и оптические свойства примесных полупроводников зависят от природных или искусственно введенных примесей. Разумеется, для эффективного управления свойствами материала необходим строгий контроль количества примеси в составе вещества, такое контролируемое введение примеси называется легированием . Создание заданной концентрации примеси – довольно сложная, но выполнимая задача. Следует понимать, что в составе некоторых веществ неизбежно присутствует какое-то количество природной примеси. В таких случаях ее влияние на оптические и электрические свойства материала необходимо изучать и впоследствии учитывать.

Рассмотрим механизм примесной проводимости на примере классических полупроводников Ge , и Si . Оба элемента являются четырехвалентными, а атомы в кристалле связаны ковалентными силами. Это означает, что каждый атом в решетке окружен четырьмя такими же атомами и связан с ними, имея общую пару электронов.

Рис. 12.3. Сведенное в плоскость изображение кристаллической решетки

идеального 4-валентного кристалла

Если кристалл идеальный, то все связи вокруг атома являются насыщенными – не имеющими свободных мест, а свободных электронов в пространстве между атомами нет (рис. 12.3).

Предположим, что в кристалл вместо одного из основных атомов попал атом, валентность которого на единицу больше (атом фосфора P в кристалле Ge ). 4 из 5 электронов фосфора распределятся между соседними атомами германия, а пятый электрон будет держаться рядом за счет довольно слабой связи (рис. 12.4).

Рис. 12.4. Сведенное в плоскость изображение кристаллической решетки

Ge с 5-валентной примесью фосфора

Эту связь легко нарушить нагреванием кристалла или при его освещении. Оторванный электрон будет свободным и при подаче разности потенциалов сможет двигаться в соответствующую сторону. Примесь, которая добавляет в кристалл свободные электроны, называется донорной .

На энергетической схеме донорной примеси будет соответствовать уровень, расположенный на некотором расстоянии от дна зоны проводимости. Расстояние между уровнем примеси и зоной проводимости пропорционально энергии E примес , которая необходима для отрыва примесного электрона от материнского атома, т.е. для перевода электрона в свободное состояние (рис. 12.6 а). Факт отрыва электрон от своего атома и перехода его в свободное состояние означает переход электрона в зону проводимости. Донорный уровень, освободившийся при этом, впоследствии может на какое-то время захватить любой свободный электрон – то есть оборванная связь фосфора может служить кратковременным хранилищем электронов.

Итак, в результате получаем электрон проводимости, и в отличие от собственной проводимости (см. выше), свободная дырка не образуется. В регистрируемый ток в этом случае вклад будут вносить преимущественно электроны, которые являются в таком полупроводнике основными носителями заряда, а дырки – неосновными. Тип проводимости в таком кристалле называется электронным или n -типа, и сам кристалл получает статус кристалла с электронной проводимостью или кристалл n -типа.

Если же в четырехвалентный кристалл ввести трехвалентную примесь, то одна из четырех связей атома, расположенного рядом с примесью, будет ненасыщенной из-за отсутствия 4-го электрона (рис. 12.5). Такое вакантное место (дырка) легко захватывает электрон из соседнего узла – это соответствует переходу дырки в свободное состояние.

Рис. 12.5. Сведенное в плоскость изображение кристаллической решетки

Si с 3-валентной примесью бора

При подаче на кристалл разности потенциалов дырка перемещается так же как электрон проводимости, только в противоположную сторону. Таким образом, кристалл с примесью указанного типа будет иметь дырочный тип проводимости или называться кристаллом p -типа. На энергетической схеме появление примеси, которая в данном случае называется акцепторной , отразится возникновением уровня в запрещенной зоне вблизи потолка валентной зоны выше на E примес . На этот уровень будет захватываться электрон с занятого уровня в валентной зоне, в которой при этом будет оставаться свободная дырка (рис. 12.6 б).

Рис. 12.6. Примесная проводимость: а) электронная, б) дырочная

Очевидно, что в кристаллах с p-типом проводимости свободными являются только дырки, свободных электронов не появляется без дополнительно сообщенной энергии. Дырки являются основными носителями заряда, а электроны – неосновными. Следовательно, ток будет представлять собой упорядоченное движение преимущественно дырок (направление их движения совпадает с направлением тока).

Специфика донорной и акцепторной примесей такова, что их уровни на энергетической схеме могут располагаться относительно зон только определенным образом: донорные примеси дают уровни в верхней части запрещенной зоны, акцепторные – в нижней. Появление примеси в составе кристалла приводит к изменению положения уровня Ферми (см. выше).

В частности для кристалла с донорной примесью уровень E F поднимается вверх, для кристалла с акцепторной примесью – сдвигается вниз (рис. 12.6). Уровень Ферми является важной характеристикой полупроводника, в частности без использования этого понятия не обходится теория p-n переходов.

Добавим, что при получении кристалла с примесной проводимостью в качестве вводимой примеси можно использовать атомы и других валентностей. Тогда разница валентностей показывает, сколько свободных носителей заряда (электронов или дырок) вносит в кристалл каждый атом примеси.

Для получения высоких показателей электропроводности материала необходимо наличие в образце высокой концентрации носителей заряда (количества носителей заряда на единицу объема кристалла). Этого добиваются путем контролируемого введения примеси требуемого типа. Современные технологии позволяют учитывать количество введенных атомов буквально поштучно. Измерить концентрацию носителей заряда, а также определить их тип (электрон или дырка) можно с помощью эффекта Холла (см. курс электромагнетизма).

В общем случае проводимость полупроводникового материала складывается из собственной и примесной проводимости:

(12.6)

Примесная проводимость имеет также, как и собственная, экспоненциальную зависимость от температуры.

(12.7)

При низких сравнительно температурах основную роль играет примесная проводимость (рис.12.7 участок I). По наклону прямой зависимости проводимости от температуры в полулогарифмических координатах можно определить энергию активации примеси E примес , т.к. tgα прим пропорционален глубине залегания уровня примеси в запрещенной зоне.

При повышении температуры, когда все атомы примеси уже задействованы, в некотором интервале температур проводимость остается постоянной (рис.12.7 участок II).

Рис. 12.7. Зависимость электропроводности полупроводника от температуры

Начиная с температуры активации собственной проводимости, опять наблюдается снижение сопротивления материала (рис.12.7 участок III). Тангенс угла наклона соответствующего участка tgα соб пропорционален энергии активации собственной проводимости полупроводника, т.е. ширине его запрещенной зоны.



Рекомендуем почитать

Наверх