Сигнализатор повышенной влажности воздуха. Какие бывают датчики влажности воздуха для вентилятора? Как выбрать датчик температуры и влажности воздуха Влажность измеряется по параметрам

Стильные 12.04.2023
Стильные

Вода может стать источником большой беды, если вовремя не узнать о ее появлении там, где ее не ждут и где она нежеланна, особенно в больших количествах.

Помочь человеку в подобных случаях и избежать многих неприятностей может индивидуальный сигнализатор появления влаги, который можно выполнить очень компактным. Схема сигнализатора показана на рис.1.

На германиевых транзисторах VT1, VT2, резисторах R1, R2, конденсаторе С1 и головке громкоговорителя собран тональный генератор, который при исправных деталях начинает звучать сразу, как только на него будет подано напряжение питания. Питание на генератор подается через ключевой каскад на кремниевых транзисторах VT3, VT4, резисторах R3...R5 и датчике появления влаги. Многие жидкости обладают электропроводностью и, следовательно, сопротивлением электрическому току. Так, водопроводная вода имеет омическое сопротивление в несколько килом.

Следовательно, попадание влаги на датчик эквивалентно появлению между базой транзистора VT3 и "минусом" цепи питания некоторого сопротивления, которое делает электрический потенциал базы транзистора VT3 отрицательным по отношению к эмиттеру этого транзистора. Такое включение для транзистора VT3 является открывающим, и через него начинает течь ток, который в свою очередь приводит к открыванию транзистора VT4. Оба транзистора, открывшись, входят в режим насыщения, электронный ключ замыкается, и через него на тональный генератор подается питание. Начинает звучать головка громкоговорителя (0,5 ГДШ-2), тональность и громкость звука которой способны разбудить даже крепко спящего человека. В дежурном (ждущем) режиме сигнализатор потребляет ток значительно меньше 1 мкА. В режиме сигнализации (при попадании воды на датчик) прибор потребляет ток не более 80 мА. Так как прибор очень экономичен в дежурном режиме, то в наиболее ответственных случаях установка в него выключателя питания даже нежелательна.

Чтобы убедиться, что сигнализатор включен и работоспособен, достаточно замкнуть пластины его датчика влажными пальцами руки или чем-то металлическим. В случае исправности он тут же подаст "голос".

Область применения сигнализатора появления влаги не ограничена охранными функциями. Он может следить за

наполнением жидкостью каких-либо емкостей, или его можно использовать в качестве электронной "няни". В последнем случае датчик (датчики) подкладывают под пеленки. Как только пеленки намокнут "няня" тут же об этом просигнализирует. Для приведения электронной "няни" в дежурное положение достаточно протереть датчик какой-либо салфеткой или ветошью.

В качестве VT1 можно использовать МП11А (МП35 ...МП38), а в качестве VT2 -МП39 (МП16...МП42Б), т.е. любые низкочастотные маломощные германиевые транзисторы соответствующей проводимости. В качестве VT3 применен КТ203, в качестве VT4 - КТ814. Радиатор для VT4 не нужен. В качестве головки громкоговорителя подойдут любые мощностью 0,25...2 Вт с номинальным электрическим сопротивлением 8 Ом. Монтаж прибора может быть как навесным, так и с использованием печатной платы, размеры и конфигурация которой зависят от размеров примененных деталей и корпуса прибора.

В качестве датчика прибора можно использовать пластину одностороннего фольгированного материала, на которой вытравлены контактные полоски (рис. 2). Можно вырезать полоски датчика из медной фольги и наклеить их на резину, кожу и т.п. Полоски следует залудить припоем. Некоторые из авторов советуют этого не делать, так как внешний вид от этого становится кустарным. Но если залуживать хорошо прогретым, зачищенным и облуженным жалом мощного паяльника хорошо зачищенные и натертые канифолью печатные проводники, используя малые количества припоя (это своеобразное "ноу-хау"), то качество покрытия получается отличным. Вместе с этим устраняются дефекты печатных проводников из-за микротрещин, и повышается срок службы печатных плат, особенно тех, которые из-за применения нельзя покрывать защитным лаком.

Чем меньше будет расстояние между полосками датчика, тем выше вероятность того, что сигнализатор сработает даже от попадания на датчик нескольких капель дождя. Длина проводников, соединяющих датчик с прибором, может быть от нескольких десятков сантиметров до нескольких сотен метров.

С.Н. Коваленко, г. Запорожье

Прибор, которым измеряют уровень влажности, называется гигрометром или просто датчиком влажности. В повседневной жизни влажность выступает немаловажным параметром, и часто не только для самой обычной жизни, но и для различной техники, и для сельского хозяйства (влажность почвы) и много для чего еще.

В частности, от степени влажности воздуха немало зависит наше самочувствие. Особенно чувствительными к влажности являются метеозависимые люди, а также люди, страдающие гипертонической болезнью, бронхиальной астмой, заболеваниями сердечно-сосудистой системы.

При высокой сухости воздуха даже здоровые люди ощущают дискомфорт, сонливость, зуд и раздражение кожных покровов. Часто сухой воздух может спровоцировать заболевания дыхательной системы, начиная с ОРЗ и ОРВИ, и заканчивая даже пневмонией.

На предприятиях влажность воздуха способна влиять на сохранность продукции и оборудования, а в сельском хозяйстве однозначно влияние влажности почвы на плодородие и т. д. Здесь и спасает применение датчиков влажности — гигрометров .

Какие-то технические приборы изначально калибруются под строго требуемую важность, и иногда чтобы провести точную настройку прибора, важно располагать точным значением влажности в окружающей среде.

Влажность может измеряться несколькими из возможных величин:

    Для определения влажности как воздуха, так и других газов, измерения проводятся в граммах на кубометр, когда речь об абсолютном значении влажности, либо в единицах RH, когда речь о влажности относительной.

    Для измеряется влажности твердых тел или в жидкостях подходят измерения в процентах от массы исследуемых образцов.

    Для определения влажности плохо смешиваемых жидкостей, единицами измерения будут служить ppm (сколько частей воды приходится на 1000000 частей веса образца).

По принципу действия, гигрометры делятся на:

    емкостные;

    резистивные;

    термисторные;

    оптические;

    электронные.

Емкостные гигрометры, в самом простом случае, представляют собой конденсаторы с воздухом в качестве диэлектрика в зазоре. Известно, что у воздуха диэлектрическая проницаемость непосредственно связана с влажностью, а изменения влажности диэлектрика приводят и к изменениям в емкости воздушного конденсатора.

Более сложный вариант емкостного датчика влажности в воздушном зазоре содержит диэлектрик, с диэлектрической проницаемостью, могущей сильно меняться под влиянием на него влажности. Данный подход делает качество датчика лучше, чем просто с воздухом между обкладками конденсатора.

Второй вариант хорошо подходит для проведения измерений относительно содержания воды в твердых веществах. Исследуемый объект размещается между обкладками такого конденсатора, к примеру объектом может быть таблетка, а сам конденсатор присоединяется к колебательному контуру и к электронному генератору, при этом измеряется собственная частота полученного контура, и по измеренной частоте «вычисляется» емкость, полученная при внесении исследуемого образца.

Безусловно, данный метод обладает и некоторыми недостатками, например при влажности образца ниже 0.5% он будет неточным, кроме того, измеряемый образец должен быть очищен от частиц, имеющих высокую диэлектрическую проницаемость, к тому же важна и форма образца в процессе измерений, она не должна изменяться в ходе исследования.

Третий тип емкостного датчика влажности - это емкостный тонкопленочный гигрометр. Он включает в себя подложку, на которую нанесены два гребенчатых электрода. Гребенчатые электроды играют в данном случае роль обкладок. С целью термокомпенсации в датчик дополнительно вводят еще и два термодатчика.

Такой датчик включает в себя два электрода, которые нанесены на подложку, а поверх на сами электроды нанесен слой материала, который отличается достаточно малым сопротивлением, сильно, однако, меняющимся в зависимости от влажности.

Подходящим материалом в устройстве может выступать оксид алюминия. Данный оксид хорошо поглощает из внешней среды воду, при этом удельное сопротивление его заметно изменяется. В результате общее сопротивление цепи измерения такого датчика будет значительно зависеть от влажности. Так, об уровне влажности станет свидетельствовать величина протекающего тока. Достоинство датчиков такого типа - малая их цена.

Термисторный гигрометр состоит из пары одинаковых термисторов. К слову напомним, что — это нелинейный электронный компонент, сопротивление которого сильно зависит от его температуры.

Один из включенных в схему термисторов размещают в герметичной камере с сухим воздухом. А другой - в камере с отверстиями, через которые в нее поступает воздух с характерной влажностью, значение которой требуется измерить. Термисторы соединяют по мостовой схеме, на одну из диагоналей моста подается напряжение, а с другой диагонали считывают показания.

В случае, когда напряжение на выходных клеммах равно нулю, температуры обоих компонентов равны, следовательно одинакова и влажность. В случае, когда на выходе будет получено не нулевое напряжение, то это свидетельствует о наличии разности влажностей в камерах. Так, по значению полученного при измерениях напряжения определяют влажность.

У неискушенного исследователя может возникнуть справедливый вопрос, почему же температура термистора меняется при его взаимодействии с влажным воздухом? А дело все в том, что при увеличении влажности, с корпуса термистора начинает испаряться вода, при этом температура корпуса уменьшается, и чем выше влажность, тем более интенсивно происходит испарение, и тем стремительнее остывает термистор.

4) Оптический (конденсационный) датчик влажности

Этот вид датчиков наиболее точен. В основе работы оптического датчика влажности — явление связанной с понятием «точка росы». В момент достижения температурой точки росы, газообразная и жидкая фазы - в условии термодинамического равновесия.

Так, если взять стекло, и установит в газообразной среде, где температура в момент исследования выше точки росы, а затем начать процесс охлаждения данного стекла, то при конкретном значении температуры на поверхности стекла начнет образовываться водяной конденсат, это водяной пар станет переходить в жидкую фазу. Данная температура и будет как раз точкой росы.

Так вот, температура точки росы неразрывно связана и зависит от таких параметров как влажность и давление в окружающей среде. В результате, имея возможность измерения давления и температуры точки росы, получится легко определить и влажность. Этот принцип служит основой для функционирования оптических датчиков влажности.

Простейшая схема такого датчика состоит из светодиода, светящего на зеркальную поверхность. Зеркало же отражает свет, меняя его направление, и направляя на фотодетектор. В данном случае зеркало можно подогревать или охлаждать посредством специального устройства регулирования температуры высокой точности. Часто таким устройством выступает термоэлектрический насос. Конечно же, на зеркало устанавливают датчик для измерения температуры.

Прежде чем начать измерения, температуру зеркала выставляют на значение, которое заведомо выше температуры точки росы. Дальше осуществляют постепенное охлаждение зеркала. В момент, когда температура начнет пересекать точку росы, на поверхности зеркала тут же начнут конденсироваться капли воды, и световой луч от диода приломится из-за них, рассеется, а это приведет к уменьшению тока в цепи фотодетектора. Через обратную связь фотодетектор взаимодействует с регулятором температуры зеркала.

Так, опираясь на информацию, полученную в форме сигналов от фотодетектора, регулятор температуры станет удерживать температуру на поверхности зеркала точно равной точке росы, а термодатчик соответственно покажет температуру. Так, при известных давлении и температуре можно точно определить основные показатели влажности.

Оптический датчик влажности обладает самой высокой точностью, недостижимой другими типами датчиков, плюс отсутствие гистерезиса. Недостаток — самая высокая цена из всех, плюс большое потребление электроэнергии. К тому же необходимо следить за тем, чтобы зеркало было чистым.

Принцип работы электронного датчика влажности воздуха основан на изменении концентрации электролита, покрывающего собой любой электроизоляционный материал. Существуют такие приборы с автоматическим подогревом с привязкой к точке росы.

Часто точка росы измеряется над концентрированным раствором хлорида лития, который является очень чувствительным к минимальным изменениям влажности. Для максимального удобства такой гигрометр зачастую дополнительно оборудуют термометром. Этот прибор обладает высокой точностью и малой погрешностью. Он способен измерять влажность независимо от температуры окружающей среды.

Популярны и простые электронные гигрометры в форме двух электродов, которые просто втыкаются в почву, контролируя ее влажность по степени проводимости в зависимости от этой самой влажности. Такие сенсоры популярны у поклонников , поскольку можно легко настроить автоматический полив грядки или цветка в горшке, на случай если поливать в ручную некогда или не удобно.

Прежде чем купить датчик, подумайте, что вам нужно будет измерять, относительную или абсолютную влажность, воздуха или почвы, каков предвидится диапазон измерений, важен ли гистерезис, и какая нужна точность. Самый точный датчик — оптический. Обратите внимание на класс защиты IP, на диапазон рабочих температур, в зависимости от конкретных условий, где будет использоваться датчик, подойдут ли вам параметры.

Андрей Повный


Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://сайт/


Самые интересные ролики на Youtube


Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.


Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней... электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.


Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.


Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в "аккумулятор".

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.


Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://сайт/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.


Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.


Внимание!

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.


Если надолго забыть о поставленной на горячую плиту посуде с водой, выпарившиеся несколько литров воды и испорченная посуда вас не обрадуют. Чтобы такого не случалось, можно собрать несложное устройство, которое, будучи размещённым, например, на кухне, известит звуковыми сигналами о высокой влажности в помещении.

Схема сигнализатора повышенной влажности воздуха представлена на рис. 1. По совместительству он может подать сигнал и об образовавшейся на полу луже, что уменьшит неприятности в случае повреждения водопроводного либо отопительного оборудования или переполнения раковины при оставленном на длительное время открытом кране и засорившемся сливном отверстии.

Рис. 1. Схема сигнализатора повышенной влажности воздуха

В качестве чувствительного элемента в сигнализаторе применён газорезистор B1. Такие использовались в кассетных видеомагнитофонах и видеокамерах для блокировки работы лентопротяжного механизма при высокой влажности воздуха внутри корпуса аппарата. Логические элементы DD1.1 и DD1.2 образуют генератор импульсов, следующих примерно 15 раз в минуту. Эта частота задана резисторами R13, R15, R16 и конденсатором C9. Благодаря диоду VD7 импульсы значительно (приблизительно в 10 раз) короче пауз между ними.

Когда газорезистор сухой, его сопротивление не превышает 1...3 кОм и напряжения в точке соединения резисторов R4, R5, R7 недостаточно для открывания транзистора VT1. Закрыт и транзистор VT2. Логический уровень напряжения на нижнем (по схеме) входе элемента DD1.1 - низкий, чем запрещена работа генератора импульсов на элементах DD1.1 и DD1.2, причём на выходе элемента DD1.2 установлен низкий уровень, в свою очередь запрещающий работу генератора импульсов звуковой частоты на элементах DD1.3 и DD1.4.

Если влажность окружающего газорезистор воздуха повысится (для проверки достаточно сделать с расстояния 5...10 см два-три выдоха на газорезистор), то сопротивление газорезистора возрастёт до 10...20 МОм. Увеличившимся напряжением на базе транзистор VT1 будет открыт, вместе с ним откроется и транзистор VT2. На нижнем (по схеме) входе элемента DD1.1 будет установлен высокий логический уровень напряжения. Оба генератора импульсов заработают. Пьезоизлучатель звука HA1 станет каждые 4 с подавать звуковые сигналы длительностью около 0,5 с.

Обратная связь через резистор R7 ускоряет открывание и закрывание транзисторов VT1, VT2 и создаёт небольшой гистерезис в характеристике их переключения. Это обеспечивает чёткое без "дребезга" срабатывание сигнализатора при медленном приближении влажности к пороговой. Порог срабатывания устанавливают подстро-ечным резистором R3.

Устройство подаст сигнал и в том случае, если транзистор VT1 останется закрытым, а транзистор VT2 откроется в результате замыкания пролитой водой контактов E1 и E2. Резисторы R6 и R8 не только ограничивают базовый ток транзистора VT2, но и уменьшают опасность поражения электрическим током человека, прикоснувшегося к контактам. Сетевое напряжение может попасть на них в результате проникновения воды внутрь сигнализатора или нарушения изоляции между обмотками трансформатора T1.

Чтобы сигнализатор не досаждал звуковыми сигналами, пока устраняются причины его срабатывания, нажатием на кнопку SB1 можно заблокировать работу генераторов приблизительно на 18 мин. Столько времени конденсатор С8, разряженный нажатием на кнопку, будет заряжаться через резистор R17. Резистор R22 ограничивает разрядный ток конденсатора, предохраняя контакты кнопки от обгорания. Следует отметить, что восстановление низкого сопротивления газорезистора B1 по окончании воздействия высокой влажности происходит очень медленно. Поэтому, чтобы избавиться от назойливых сигналов, может потребоваться нажимать на кнопку SB1 несколько раз.

Пьезоизлучатель звука HA1 подключён к выходам элементов DD1.3, DD1.4 через эмиттерные повторители на транзисторах VT5, VT6 и VT7, VT8. Это увеличивает нагрузочную способность генератора и даёт возможность подключить к нему несколько излучателей звука параллельно, разместив их, например, в разных помещениях.

Светодиод HL1 сигнализирует о включении сигнализатора в сеть, а светодиод HL2 включается в моменты подачи звуковых сигналов, а также при заблокированной низким уровнем напряжения на конденсаторе C8 работе генераторов. Конденсаторы C1 и C2 предотвращают ложные срабатывания сигнализатора, вызванные помехами.

Напряжение сети 220 В поступает на первичную обмотку понижающего трансформатора T1 через защитные резисторы R1 и R2. Варистор RU1 защищает трансформатор от всплесков напряжения сети. Напряжение около 17 В с вторичной обмотки трансформатора выпрямляет диодный мост VD2-VD5. Все узлы стабилизатора питаются напряжением +9,2 В, получаемым из выпрямленного с помощью стабилизатора на транзисторах VT3 и VT4. Его значение зависит от напряжения стабилизации стабилитрона VD6.

Поскольку в качестве T1 в конструкции применён маломощный понижающий трансформатор от копировального аппарата "Xerox", рассчитанный на ток нагрузки около 10 мА, ток через стабилитрон выбран очень маленьким - менее 1 мА. Небольшая мощность трансформатора определила и выбор характера звукового сигнала - короткий тональный импульс и длинная пауза.

Можно использовать и более мощный трансформатор, например ТПК-2-12В, рассчитанный на ток нагрузки до 0,21 А. Для самостоятельного изготовления трансформатора подойдёт Ш-образный магнитопровод с площадью сечения центрального стержня 2 см 2 . Первичная обмотка должна состоять из 5900 витков обмоточного провода диаметром 0,06 мм. Вторичную обмотку, содержащую 500 витков, наматывают проводом диаметром около 0,2 мм. Пластины магнитопровода собирают вперекрышку. Готовый трансформатор можно покрыть эпоксидным компаундом.

Большинство деталей устройства размещены на монтажной плате размерами 75x45 мм, изображённой на рис. 2. На небольших отдельных платах смонтированы резисторы R6, R8 и резисторы R1, R2 c варистором RU1.

Рис. 2. Размещение деталей устройства на монтажной плате размерами 75x45 мм

Использована также готовая плата от сетевого адаптера, на которой установлены диоды VD2-VD5 и конденсатор C3. Все эти платы после изготовления покрыты со стороны монтажа влагозащитным лаком, например ХВ-784. Вместе с трансформатором T1 они размещены в пластмассовом корпусе размерами 160x110x32 мм от приёмника охранной сигнализации RR-701R.

Газорезистор B1, извлечённый из видеомагнитофона Funai, закреплён на массивной металлической пластине и вместе с ней помещён в пластмассовый корпус размерами 46x42x15 мм (рис. 3) с отверстиями для доступа воздуха. Чувствительность его значительно выше, чем у отечественного газорезистора ГЗР-2Б, применённого в конструкции, описанной в статье "Светозвуковой сигнализатор выкипания воды" ("Радио", 2004, № 12, с. 42, 43). Тем не менее ГЗР-2Б и другие аналогичные газорезисторы могут работать и в описываемом сигнализаторе.

Рис. 3. Газорезистор B1 на металлической пластине

В устройстве могут быть применены постоянные резисторы любого типа (МЛТ, С1-4, С1-14, С2-23). Желательно, чтобы резисторы R1 и R2 были невозгораемыми. Подстроечный резистор R3 - миниатюрный в корпусе, защищающем его от внешних воздействий. Крайне нежелательно использовать подстроечные резисторы открытого исполнения (например, СП3-38) из-за их низкой надёжности. Варистор RU1 - HEL14D471K или другой дисковый с классификационным напряжением 470 В.

Оксидные конденсаторы - К50-68, К53-19, К53-30 и их импортные аналоги. Конденсатор C8 должен быть с малым током утечки. Экземпляр, использованный автором, имеет ток утечки менее 10 нА при напряжении 18 В. Остальные конденсаторы - керамические К10-17, К10-50, КМ-5 или их аналоги. Конденсатор C4 должен быть рассчитан на напряжение не ниже 35 В.

Вместо диодов 1 N4002 подойдут любые из 1N4001- 1 N4007, UF4001 -UF4007, а также серий КД208, КД209, КД243. Диоды 1N4148 можно заменить на 1SS244, 1N914, КД510А, КД521А, КД521Б, КД522А, КД522Б. Стабилитрон BZV55C-10 заменяется на TZMC-10, КС210Ц, КС210Ц1, 2С210К1, 2С210К, 2С210Ц, транзисторы 2SC1685 и 2SC2058 - на 2SC1815, 2SC1845, SS9014, а также серий КТ3102, КТ6111, а транзистор 2SA1015 - на SS9012, SS9015, 2SA733 или серий КТ3107, КТ6112. Замена транзисторов 2SC2331 - 2SC2383, SS8050, BD136, BD138, КТ646А, КТ683А. Вместо транзисторов 2SA1273 и 2SA1270 пригодны SS8550, 2SB564, BD231, КТ639А, КТ644А, КТ684А. Следует иметь в виду, что предлагаемые в качестве замены транзисторы могут иметь отличия в типе корпуса и расположении выводов.

Микросхему К561ЛА7 заменят отечественные КР1561ЛА7, Н564ЛА7, 564ЛА7 (две последние в других корпусах) или импортная CD4011А.

Дроссель L1 - малогабаритный промышленного изготовления индуктивностью не менее 100 мкГн и сопротивлением обмотки 3...30 Ом. Кнопка SB1 - ПКн-125.

Излучатель звука HA1 - пьезоэлектрический вызывной прибор телефонного аппарата. Его собственная ёмкость - 0,03 мкФ. Подойдут и другие пьезоизлучатели, даже большей ёмкости, рассчитанные на напряжение не менее 20 В. Несколько таких излучателей можно соединить параллельно. Вместо пьезоизлучателя к выходу прибора можно подключить через неполярный разделительный конденсатор электромагнитный телефонный капсюль или динамическую головку с сопротивлением обмотки не менее 32 Ом, например PQAS57P3ZA-DZ.

Датчик протечки воды можно сделать, например, из пластины фольгированного с одной стороны стеклотекстолита. Фольгу разделяют по ломаной линии зазором на две изолированные части, одна из которых служит электродом E1, а вторая - электродом E2. Чем больше протяжённость зазора, тем выше вероятность того, что первые же упавшие на пластину капли воды попадут на него и замкнут электроды.

Несколько таких датчиков, соединив их параллельно, можно разместить в наиболее опасных, с точки зрения протечки воды, местах, например, под радиаторами отопления, стиральной машиной, сочленениями водопроводных труб. Коробку с газорезисто-ром помещают в наиболее подверженном запотеванию при высокой влажности месте помещения, но не на окне.

Подстроечным резистором R3 устанавливают порог срабатывания сигнализатора. Если "сухое сопротивление" газорезистора B1 восстанавливается после снижения влажности слишком долго, в сигнализатор можно установить резисторы R4 и R5 втрое меньшего сопротивления. Повысить чувствительность датчика протёкшей воды можно увеличением сопротивления резистора R9 до 100 кОм. Подбирая сопротивление резистора R20, можно установить желаемую тональность звуковых сигналов. Для удобства проверки работоспособности и налаживания сигнализатора конденсатор C8 можно временно отключить.


Дата публикации: 13.09.2015

Мнения читателей
  • Иван / 05.04.2016 - 09:28
    А есть структурная схема,описание микросхем и печатная плата?

Это простое самодельное устройство используется для воды или другой жидкости, В различных помещениях или в емкостях. Например,эти датчики очень часто используют для фиксации возможного затопления подвала или погреба талыми водами или на кухне под мойкой и т.п.


Роль датчика влажности выполняет кусок фольгированного стеклотекстолита с прорезанными в нем канавками,и как только в них попадет вода автомат отключит нагрузку от сети. Или если использовать тыловые контакты реле-автомат включит насос или или нужное нам устройство.

Сам датчик изготавливаем точно также как и в предыдущей схеме. Если жидкость попадет на контакты датчика F1 звуковой сигнализатор начнет издавать постоянный звуковой сигнал, а также загорится светодиод HL1.

Тумблером SA1 можно менять порядок индикации HL1 на непрерывное свечение светодиода в дежурной режиме.

Эту схему датчика влажности можно использовать в качестве сигнализатора дождя, переполнения какой-либо емкости с жидкостью, протечки воды и т.д. Питание схемы может быть подано от любого постоянного источника питания напряжением пять вольт.

Источником звукового сигнала является звукоизлучатель со встроенным звуковым генератором. Датчик влажности изготавливаем из полоски фольгированного текстолита, у которого сделана тонкая дорожка в фольге. Если датчик сухой, то звуковой сигнал не сигнализирует. В случае намокания датчика, мы сразу услышим прерывистый сигнал тревоги.

Питается конструкция от батарейки типа крона и ее хватит на два года, потому что во время режима ожидания, схема потребляет почти нулевой ток. Еще одним бонусом схемы можно считать тот момент, что практически любое число датчиков можно подключить параллельно входу и таким образом образом охватить всю контролируемую площадь за раз. Схема детектора построена на двух транзисторах типа 2N2222, соединенных способом Дарлингтона".

Перечень радиокомпонентов

R1, R3 - 470K
SW1 - кнопка
R2 - 15к
SW2 - переключатель
R4 - 22K
B1 - батарея типа крона
C1 - конденсатор емкостью 0.022 мкФ
T1, T2 - входные клеммы
PB1 - (RS273-059) пьезо-зуммер
Q1, Q2 - транзисторы типа 2N2222

Когда первый транзистор открывается, он сразу же отпирает второй, который включает пьезозуммер. При отсутствии жидкости оба транзистора надежно заперты и потребляется очень низкий ток от батареи питания. Когда зуммер включается, потребляемый ток увеличивается до 5 мА. Звукоизлучатели типа RS273-059 имеют в своем составе встроенный генератор. Если необходим более мощный сигнал тревоги, подключите несколько зуммеров параллельно или возьмите две батареи.

Печатную плату изготавливаем с размерами 3*5 см.

Тумблер test, подсоединяет 470 кОм сопротивление на вход, имитируя действие жидкости, тем самым проверяя работоспособность схемы. Транзисторы можно заменить на отечественные, типа КТ315 или КТ3102.

Автоматический датчик влажности предназначен для включения принудительной вентиляции помещения при повышенной влажности воздуха, может быть установлена на кухне, в ванной комнате, погребе, подвале, гараже. Его назначение - включить вентиляторы принудительного проветривания помещения, когда влажность в нём приближается к 95... 100 %.

Устройство отличается высокой экономичностью, надёжностью, а простота конструкции позволяет легко модифицировать его узлы под конкретные условия эксплуатации. Схема датчика влажности представлена на рисунке ниже.

Работает схема следующим образом. Когда влажность воздуха в помещении в норме, сопротивление датчика росы - газорезистора В1 не превышает 3 кОм, транзистор VT2 открыт, мощный высоковольтный полевой транзистор VT1 закрыт, первичная обмотка трансформатора Т1 обесточена. Также будет обесточена нагрузка, подключенная к разъёму ХР1.

Как только влажность воздуха приближается к точке выпадения росы, например, закипел оставленный без присмотра , ванная комната заполняется горячей водой, погреб подтапливается талыми, грунтовыми водами, отказал терморегулятор водонагревателя сопротивление газорезистора В1 резко жение переменного тока снимается с вторичной обмотки Т1 и поступает на мостовой диодный выпрямитель VD2. Пульсации выпрямленного напряжения сглаживаются оксидным конденсатором большой ёмкости С2. Параметрический стабилизатор напряжения постоянного тока простроен на составном транзисторе VT3 с большим коэффициентом передачи тока базы типа КТ829Б, стабилитроне VD5 и балластном резисторе R6.

Конденсаторы СЗ, С4 уменьшают пульсации выходного напряжения. К выходу стабилизатора напряжения могут быть подключены вентиляторы с рабочим напряжением 12... 15В, например,«компьютерные». К гнезду ХР1 могут быть подключены вентиляторы общей мощностью до 100 Вт, рассчитанные на напряжение питания 220 В переменного тока. В разрыв цепи питания понижающего трансформатора Т1 и высоковольтной нагрузки установлен мостовой выпрямитель VD1. На сток полевого транзистора поступает пульсирующее напряжение постоянного тока. Каскад на транзисторах VT1, VT2 питается стабилизированным напряжением +11 В, заданным стабилитроном VD7. Напряжение на этот стабилитрон поступает по цепочке R2, R3, VD4, HL2. Такое схемное решение позволяет открывать полевой транзистор полностью, что значительно снижает рассейемую на нём мощность.

Транзисторы VT1, VT2 включены как триггер Шмитта, что исключает нахождение полевого транзистора в промежуточном состоянии, чем предотвращается его перегрев. Чувствительность датчика влажности задаётся подстроечным резистором R8, а при необходимости и подбором сопротивления резистора R7. Варисторы RU1 и RU2 защищают элементы устройства от повреждений всплесками напряжения сети. Светодиод HL2 зелёного цвета свечения показывает наличие напряжения питания, а красный светодиод HL1 сигнализирует о высокой влажности и включении устройства в режим принудительного проветривания помещения.

К устройству можно подключить до 8 низковольтных вентиляторов с током потребления до 0,25 А каждый и, или несколько вентиля- торов с напряжением питания 220 В. Если с помощью этого устройства будет необходимо управлять более мощной нагрузкой с напряжением питания 220 В, то к выходу стабилизатора напряжения можно подключить электромагнитные реле, например, типа G2R-14-130, контакты которого рассчитаны на коммутацию переменного тока до 10 А при напряжении 250 В. Параллельно резистору R8 можно установить терморезистор с отрицательным ТКС, сопротивлением 3,3...4,7 кОм при 25°С, размещённым, например, над газовой или электроплитой, что позволит включать вентиляцию также и при росте температуры воздуха выше 45...50 °С, когда конфорки плиты работают на полную мощность.

На месте трансформатора Т1 можно установить любой понижающий трансформатор с габаритной мощностью не менее 40 Вт, вторичная обмотка которого рассчитана на величину тока не менее тока низковольтной нагрузки. Без перемотки вторичной обмотки «Юность», «Сапфир». Также подойдут унифицированные трансформаторы ТПП40 или ТН46-127/220-50. При самостоятельном изготовлении трансформатора можно использовать Ш-образный магнитопровод сечением 8,6 см2 Первичная обмотка содержит 1330 витков провода диаметром 0,27 мм.

Вторичная обмотка 110 витков обмоточного провода диаметром 0,9 мм. Вместо транзистора КТ829Б подойдёт любой из серий КТ829, КТ827, BDW93C, 2SD1889, 2SD1414. Этот транзистор устанавливают на теплоотвод, размер которого будет зависеть от тока нагрузки и величине падения напряжения коллектор-эмиттер VT3. Желательно выбрать такой теплоотвод, с которым температура корпуса транзистора VT3 не превышала бы 60°С.

Если напряжение на обкладках конденсатора С2 при подключенной к выходу стабилизатора нагрузке будет больше 20 В, то для уменьшения рассеиваемой VT3 мощности можно отмотать от вторичной обмотки трансформатора несколько витков. Полевой транзистор IRF830 можно заменить на КП707В2, IRF422, IRF430, BUZ90A, BUZ216 . При монтаже этого транзистора необходима его защита от пробоя статическим электричеством . Вместо SS9014 можно применить любой из серий КТ315, КТ342, КТ3102, КТ645, 2SC1815. При замене биполярных транзисторов учитывайте различия в цоколёвках.

Диодные мосты KBU можно заменить на аналогичные КВР08, BR36, RS405, KBL06. Вместо 1N4006 можно использовать 1N4004 - 1N4007, КД243Г, КД247В, КД105В. Стабилитроны: 1N5352 - КС508Б, КС515А, КС215Ж; 1N4737A - КС175А, КС175Ж, 2С483Б; 1 N4741А - Д814Г, Д814Г1, 2С211Ж, КС221В.

Светодиоды могут быть любые общего применения, например, серий АЛ307, КИПД40, L-63. Оксидные конденсаторы - импортные аналоги К50-35, К50-68. Варисторы - любые малой или средней мощности на классификационное рабочее напряжение 430 В, 470 В, например, FNR-14K431, FNR-10K471. Чувствительный к влажности воздуха газорезистор ГЗР-2Б взят из старого отечественного видеомагнитофона «Электроника ВМ-12». Аналогичный газорезистор можно найти и в других неисправных отечественных и импортных видеомагнитофонах или в старых кассетных видеокамерах. Этот газорезистор обычно прикручен к металлическому шасси лентопротяжного механизма. Его назначение - блокировать работу аппарата при запотевании лентопротяжного механизма, что предотвращает заматывание и порчу магнитной ленты. Устройство можно смонтировать на печатной плате размерами 105x60 мм, Газорезистор предпочтительнее разместить в отдельной коробочке из изоляционного материала с отверстиями, устанавливаемой в месте попрохладней. Также рекомендуется прикрутить его к небольшой металлической пластине, можно через тонкую слюдяную изолирующую прокладку. Для защиты смонтированной платы от влаги, монтаж и печатные проводники покрывают несколькими слоями лака ФЛ-98, МЛ-92 или цапонлаком.

Газорезистор ничем закрашивать не надо. Для проверки устройства на работоспособность можно просто выдохнуть на газорезистор воздух из лёгких или, поднести поближе ёмкость с кипятком. Через несколько секунд вспыхнет светодиод HL1 и подключенные в качестве нагрузок вентиляторы начнут бороться с повышенной влажностью. В дежурном режиме устройство потребляет ток от сети около 3 мА, что очень немного. Поскольку устройство потребляет в дежурном режиме мощность менее 1 Вт, то его можно эксплуатировать круглосуточно, не опасаясь за расход электроэнергии. Так как устройство частично имеет гальваническую связь с напряжением сети переменного тока 220 В, то при настройке и эксплуатации устройства следует соблюдать соответствующие меры предосторожности.

В результате многочисленных экспериментов появилась вот эта схема датчика почвы на одной единственной микросхеме. Подойдёт любая из микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A.

Датчик влажности воздуха, схема и чертежи которого прилагаются, дает возможность полностью автоматизировать процесс контроля и управления относительной влажностью воздуха в любом помещении. Данная схема датчика влажности дает возможность измерять относительную влажность в диапазоне от 0–100%. При очень высокой точности и стабильности параметров

Светозвуковой сигнализатор выкипания воды. - Радио, 2004, №12, стр. 42, 43.
. - Схемотехника, 2004, №4, стр. 30-31.
Константа» в погребе. - САМ, 2005, № 5, стр. 30, 31.



Рекомендуем почитать

Наверх