Схема блока электронного зажигания электроника к 1. Схема электронного зажигания для автомобиля. Печатные платы для сборки

На короткие волосы 12.04.2023
На короткие волосы

Автомобиль – система невероятно сложная, включает в себя множество компонент и устройств, которые постоянно взаимодействуют между собой. Без системы зажигания Ваш автомобиль с места не сдвинется. Стоит уделить особое внимание этому аспекту, а, в частности, обсудить вопросы, связанные с электронным зажиганием.

Что такое электронное зажигание?

Электронная система зажигания – это такая система зажигания, которая использует электронные устройства для создания и передачи тока высокого напряжения на цилиндры двигателя. Также эту систему иногда называют микропроцессорной системой зажигания.

Нужно упомянуть о том, что и бесконтактная, и контактно-транзисторная системы в своей конструкции используют электронные механизмы, но названия данных систем уже давно устоялись. Электронное зажигание лишено любых механических контактов, поэтому можно сказать, что электронное зажигание является бесконтактным. Современные модели автомобилей оснащены электронной системой зажигания, которая является компонентой системы управления движком. С помощью этой системы контролируется объединенная система впрыска и зажигания, а иногда и другие системы (впускная, выпускная, охладительная).

Все системы электронного зажигания можно разбить на две категории: системы с прямым зажиганием и с распределителем. Распределительная система электронного зажигания во время работы использует распределитель на механике, который отвечает за передачу сильного тока на свечу. Системы прямого зажигания передают ток прямо на катушки зажигания.

Конструкцию системы электрозажигания формируют достаточно традиционные компоненты – источник питания, катушка зажигания, свечи, выключатель, высоковольтные провода. Также в систему входят воспламенитель (устройство-исполнитель), и входные датчики. Эти самые датчики фиксируют показатели работы двигателя в текущий момент и преобразуют эти показатели в электрические импульсы. В своей работе электронное зажигание использует показания датчиков, которые присутствуют в системе управления двигателем. К этим устройствам относятся датчики:

- частоты вращения коленвала двигателя;

Массового расхода воздуха;

Положения распредвала;

Детонации;

Температуры охлаждающей жидкости, воздуха;

Кислородный датчик и другие.

С помощью блока управления двигателя происходит обработка сигналов сходных датчиков и формирование управляющего воздействия на воспламенитель. Сам воспламенитель – это электронная плата, которая обеспечивает выключение и включение зажигания. В основе воспламенителя лежит транзистор. Если транзистор открыт, то ток идет на первичную обмотку катушки зажигания, а если он закрыт, то ток идет на вторичную обмотку. Катушка в системе зажигания может быть одна общая, индивидуальные или же сдвоенные. При использовании индивидуальных катушек зажигания отпадает необходимость использовать провода высокого напряжения, так как такая катушка будет крепиться прямо на свечу. В распределительных системах зажигания применяются общие катушки зажигания.

Для систем прямого зажигания характерно использование сдвоенных катушек. Если двигатель имеет 4 цилиндра, то одна из катушек приходится на первый и четвертый цилиндры, а другая – на второй и третий. С помощью катушек происходит генерация тока высокого напряжения, причем для тока есть два вывода, посему искра проходит сразу в оба цилиндра. В одном из них воспламеняется топливно-воздушная смесь, а в другом искра идет вхолостую.

Электронная система зажигания работает по следующему принципу. На электронный блок управления приходят сигналы датчиков. Основываясь на этих показаниях, вычисляются наиболее оптимальные параметры для работы всей системы. Далее управленческий импульс идет к воспламенителю, который и отвечает за подачу напряжения на зажигательную катушку. После этого по первичной обмотке катушки начинает «бежать» ток.

Когда подача напряжения прерывается, тогда ток высокого напряжения протекает по вторичной обмотке катушки зажигания. Этот самый ток передается свече зажигания или прямо с катушки, или через высоковольтные провода. После того, как на свечу поступает ток, образуется искра, благодаря которой детонирует топливно-воздушная смесь. Когда меняется скорость вращения , то датчик частоты его вращения вместе с датчиком положения распредвала передают сигнал на ЭБУ, который производит сигнал для изменения угла опережения зажигания. Когда двигатель находится под воздействием возросшей нагрузки, то угол опережения зажигания регулируется датчиком массового расхода воздуха. Остальные датчики предоставляют дополнительную информацию.

Если Вы решите заменить заводское зажигание на электронное, то больше не будете сталкиваться с большинством проблем с зажиганием, а также получите ряд преимуществ, например, динамичность Вашей машины увеличится, а в мороз двигатель будет запускать легче.

Если сравнивать заводское зажигание с электронным, то последняя система использует транзистор выхода для замыкания и размыкания цепь. Подобное решение приводит к тому, что напряжение на свечах автомобиля возрастает, а от искры получается больше энергии. Также такое конструкторское решение не позволяет напряжению на электродах свечей падать даже при низких температурах, посему двигатель легче запускается даже при неблагополучных условиях. Хотя у катушек и заводского, и электронного зажигания набор проводов одинаковый, но обязательно нужно проверять правильно ли они подключены, так как в системе электрозажигания катушка может развернуться на кронштейне на все 180 градусов.

Установка электронного зажигания

Имеет смысл сказать несколько слов о том, что же входит в комплект элементов системы электронного зажигания. Всю систему формируют следующие 5 элементов:

1) Бесконтактный трамблер. Выполняет роль распределяющего датчика зажигания. На машинах с разными видами двигателей будут установлены разные трамблеры.

2) Коммутатор. Коммутатор отвечает за прерывание электрического тока, идущего по катушке зажигания. Это реакция на сигналы, которые исходят из распределительного датчика. Каждый коммутатор «умеет» отключать электрический ток, причем даже тогда, когда включено зажигание, или же работает двигатель.

3) Катушка зажигания. Этот элемент необходим для преобразования низковольтного тока в высоковольтный. Подобная процедура крайне важна по причине необходимости пробивать воздушную прослойку, образовывающуюся между контактами электродов свечей.

4) Комплект проводов

5) Свечи для передачи искры в цилиндры.

Для того, чтобы установить электронное зажигание, Вам понадобятся:

1) Набор гаечных ключей;

2) Крестовидная отвертка;

3) Саморезы;

4) Электронная дрель и сверло, диаметр которого аналогичен саморезу.

Начинать установку электрического зажигания можно только по окончанию полноценной регулировки трамблера.

Последовательность действий следующая:

1) С трамблера нужно снять крышку, к которой идут высоковольтные электрические провода;

3) В стартерной системе происходят короткие включения, за счет чего нужно выставить линию резистора так, чтобы она образовывала с двигателем прямой угол. После выставления направления резистора запрещено проворачивать коленвал вплоть до окончания работ;

4) Справа на корпусе трамблера имеются 5 меток, которые нужны для того, чтобы регулировка зажигания была сделана правильно. Дабы правильно установить новый трамблер, необходимо отметить на моторе то место, которое расположено напротив средней отметки старого трамблера;

6) После демонтажа старого трамблера можно будет ставить новый. Это делается посредством помещения детали в мотор на основе той метки, которая была поставлена ранее;

7) После установки и регулировки нового трамблера, его нужно будет зафиксировать гайкой;

8) После закрепления трамблера можно будет вернуть на место крышку, а после этого можно подключать к крышке электропровода.

9) После манипуляций с трамблером, необходимо заменить катушку, так как катушки контактного и электронного зажигания различны между собой;

10) После переустановки катушки нужно подвести к зажиганию провода. Важно не забыть о трехштырьковом высоковольтном проводе, соединяющем катушку с трамблером;

11) После окончания работ с катушкой можно переходить к установке коммутатора. Наиболее простое решение – это размещение коммутатора в свободной области между омывателем и левой фарой. Для того, чтобы закрепить элемент, необходимо будет сделать под размер его «ушей» отверстия, а сам коммутатор крепиться с помощью саморезов. После монтажа нужно будет «бросить» провод от коммутатора к системе зажигания;

12) После окончания всех работ нужно проверить правильность подключения проводов. Ориентиром для этого будут сервисная книжка Вашей машины, а также схема, имеющая в комплекте элементов электронного зажигания.

Неисправности электронного зажигания

Во время использования автомобиля любой его компонент может выйти из строя, в том числе это касается системы зажигания. Были выделены дефекты, которые характерны для любой системы зажигания:

- выход из стоя свечей системы зажигания;

Поломка катушки;

Проблема с высоковольтными и низковольтными проводами (наличие обрыва, окисленные контакты, недостаточно плотное соединение и т.д.).

В системе электрозажигания также могут возникнуть неполадки, связанные с неисправностями ЭБУ и входными датчиками.

Система зажигания ломается по следующим причинам:

1) Были нарушены правила эксплуатации автомобиля (в машину заливался некачественный бензин, авто вовремя не обслуживалось, а если диагностика и проводилась, то она могла быть выполнена неквалифицированным мастером);

2) В машину ставились некачественные конструктивные элементы (катушки, свечи системы зажигания, провода высокого напряжения и т.д.);

3) Поломка произошла под воздействием фактором извне (атмосферное воздействие, механическое повреждение).

Наиболее распространенный дефект электронной системы зажигания – это выход из строя свечей. К счастью, сегодня эти элементы могут приобрести все автомобилисты, посему устранение этой поломки не займет много времени.

Указать на неисправности системы электронного зажигания поможет даже внешняя диагностика. Легче всего заметить, как реагирует зажигание на неисправности, которые есть в топливной системе и системе впрыска горючего. Посему диагностировать систему зажигания нужно в комплексе с данными системами.

Внешние признаки поломки зажигания:

1) Увеличенный расход горючего;

2) Сниженная мощность движка;

3) На холостом ходу двигатель работает неустойчиво;

4) Запускать двигатель стало труднее.

В случае системы электронного зажигания плохая работа двигателя, его затрудненный запуск сигнал к тому, что произошел пробой или обрыв проводов высокого напряжения, вышли из строя свечи, сломан ЭБУ, датчик частоты вращения коленвала или датчика холла. Если же Ваш автомобиль стал «съедать» больше горючего, а двигатель стал выдавать меньшую мощность, то это может свидетельствовать о том, что вышки из строя свечи, входные датчики или ЭБУ.

Перед тем, как ехать к специалисту, постарайтесь самостоятельно произвести диагностику системы зажигания, так как велика вероятность самостоятельного обнаружения дефекта. В этом случае Вы просто замените свечи или катушку, и снова будете «на коне». Успехов.

2.3. Бесконтактные системы зажигания.

Вариант 1.

За многие годы, прошедшие после выпуска первых модификаций "Вихрей", было разработано немало систем электронного тиристорного зажигания, предусматривающего использование в качестве датчика момента зажигания штатных прерывателей мотора или магнитной системы маховика. В последнем варианте необходимым условием являлось размагничивание части магнитов.

Однако прерыватели заведомо являются наиболее слабым местом в системе зажигания, требуют тщательной регулировки зазоров. С другой стороны, размагничивание магнитов доступно не каждому и ведет к потере мощности, снимаемой с генераторных катушек магнето.

Ниже описывается весьма надежная схема тиристорной бесконтактной системы, разработанная В. Михайловым. Схема включает накопительный конденсатор и магнитоэлектрический датчик, установленный с наружной стороны маховика. При замыкании магнитной цепи датчика планками, укрепленными на маховике, в катушке датчика возникает импульс, синхронизирующий работу тиристорной системы зажигания.

Благодаря тому, что замыкающая планка установлена на некотором расстоянии отдатчика, первоначально отрегулированная система не требует затем никакого ухода при эксплуатации. Момент зажигания в каждом цилиндре может быть установлен с гораздо большей точностью, чем в других системах (точно через 180°), что способствует некоторому повышению мощности двигателя. Кроме этого улучшается запуск "Вихря", мотор устойчиво работает на малых оборотах. Штатное же магнето используется для зарядки аккумулятора.

Схема зажигания (рис. 86) состоит из генератора импульсов, выполненного на тиристоре Д4 и конденсаторе С6, катушек зажигания КЗ-1 и КЗ-2, формирователя управляющих импульсов - несимметричного триггера Т1, Т2, эмиттерного повторителя ТЗ и электронного ключа Т4.

Питание схемы осуществляется от преобразователя напряжения (рис. 87) , который представляет собой двухтактный релаксационный генератор, собранный на двух транзисторах Т5,Т6 и трансформаторе Тр. Генерируемое напряжение выпрямляется с помощью мостика Д5-Д8.


Несимметричный триггер имеет два состояния: устойчивое - при отсутствии внешнего импульса и квазиустойчивое - при поступлении отрицательного импульса от датчика. При отсутствии сигнала транзистор Т, закрыт, так как сопротивление датчика значительно меньше сопротивления R 1 а транзистор Т 2 - открыт, поскольку на его базу с коллектора транзистора Т, поступает напряжение, достаточное для полного включения. Транзисторы Т 3 и Т 4 при устойчивом состоянии триггера закрыты, поскольку их базы соединены через резисторы R 6 и R 8 с плюсовой шиной.

При прохождении замыкающей планки мимо магнитного датчика ДМ в его катушке образуются два импульса, первый - отрицательный, а второй - положительный (при перемене концов катушки порядок будет обратным).

Отрицательный импульс "опрокидывает" триггер, пере водя его в квазиустойчивое состояние. При нагрузке транзистора Т 2 возникает прямоугольный импульс отрицательной полярности, который через эмиттерный повторитель Т 3 , поступает на базу транзистора Т 4 и открывает его, в результате чего на нагрузке R 10 выделяется импульс положительной полярности. Этот импульс через конденсатор С5 открывает тиристор Д4. Открытый тиристор замыкает цепь, состоящую из конденсатора С6, заряженного от преобразователя напряжением 300-320 В, и катушки зажигания. На вторичной обмотке катушки зажигания возникает импульс высокого напряжения.

Начальное отрицательное смещение (0,6-0,7 В), необходимое для устойчивой работы тиристора, задается на управляющий электрод тиристора резистором R 11 и диодом ДЗ.

При работе мотора на полных оборотах напряжение, поступающее от датчика, может достигнуть значительное величины, поэтому на входе устанавливается ограничитель (резистор К.2 и стабилитрон Д1). Конденсатор С2 сглаживает скачки напряжения и препятствует опрокидыванию триггера от случайных помех. Стабилитрон Д2 и резистор К9 стабилизируют напряжение питания триггера и эмиттерного повторителя на уровне 9,5-10 В.

Амплитуду импульсов датчика можно регулировать величиной зазора между датчиком и замыкающей планкой. Величина зазора должна быть такой, чтобы обеспечивался надежный запуск двигателя. Напряжение 300 В для заряда конденсатора С6 получается в электронном преобразователе (рис. 87).

Штатное зажигание мотора "Вихрь" - двухканальное, т.е. каждый цилиндр имеет отдельную систему. В описываемой схеме применена одноканальная система: искры при этом образуются одновременно в обоих цилиндрах - и в котором совершается рабочий ход, и в котором идет продувка, но так как в момент продувки свеча омывается отработавшими газами лишь с небольшой примесью свежей смеси, воспламенения в этом цилиндре не происходит. Применение одноканальной схемы позволяет значительно упростить систему.

Генератор импульсов и формирователь управляющих сигналов собраны в одном блоке на двух печатных платах, соединенных алюминиевыми швеллерами высотой 35 мм. На одном швеллере установлены тиристор Д4 и триод Т4, на другом - накопительный конденсатор С6. На малой плате размером 80 х 90 смонтированы триггер и эмиттерный повторитель; на большой плате размером 80 х 165 - цепи управления тиристором и цепи, соединяющие блок с мотором и источником питания. Тиристор изолируется от швеллера текстолитовой втулкой и слюдяной пластинкой.

Блок крепится к текстолитовой планке 80 х 70 с 11 клеммами (болты М6), соединенной с картером мотора дюралюминиевой пластинкой. К этой же пластинке крепятся и слегка раздвинутые штатные высоковольтные трансформаторы. Общая схема соединения блоков зажигания представлена на рис. 88 .

В магнитоэлектрическом датчике (рис. 89) применены катушка от реле РСМ, имеющая 5000 витков провода ПЭ 0,06 и сопротивление 750 Ом.


Магнитная система собрана из магнитов от микродвигателей, применяемых в детских игрушках. Для изготовления датчика требуются два магнита от одного микродвигателя. Катушка прикрепляется к верхней планке 6 винтом с потайной головкой. Оба магнита 5 устанавливаются (одноименными полюсами в одну сторону) между верхней и нижней 3 планками, стянутыми винтами и латунными стойками 4. Винты должны быть короткими, чтобы через них не замыкался магнитный поток. На верхней части датчика устанавливается гетинаксовая плата с печатным монтажом в виде двух полосок, к одному концу которых припаиваются выводы катушки, а к другому - провода, соединяющие датчик со схемой. Деталировка датчика и замыкателя приведена на рис. 90 .

Датчик устанавливается на пластине, прикрепленной к основанию магнето с наружной стороны маховика. Место крепления планки расположено между выступом основания магнето для крепления левого конденсатора и выступом, на котором расположен левый контакт прерывателя.

Более точно сам датчик на планке устанавливается следующим образом. Ручка газа поворачивается в положение "полный газ", которому соответствует максимальное опережение зажигания. Поршень верхнего цилиндра останавливается в 7 мм от ВМТ. Датчик при этом должен встать против второго (по ходу движения) свободного отверстия для крепления башмаков магнитов в маховике. В это отверстие вставляется замыкатель 9. Второй замыкатель для нижнего цилиндра вставляется в свободное отверстие маховика, сдвинутое на 180°.

Оси отверстий в маховике параллельны диаметру и расположены на расстоянии 16 мм от него, поэтому необходимо профрезеровать на маховике торцевой фрезой плоскость, а после установки в отверстия замыкателей прошлифовать их на кругло-шлифовальном станке.

Блок преобразователя (рис. 91) собран на алюминиевой пластине размером 120 х 110x3.


Диоды и резисторы смонтированы на печатной плате, укрепленной над основанием. Триоды (старые обозначения - П213, П214, П216, П217) монтируются на изолированном от основания алюминиевом швеллере высотой 35 мм.

Сердечник трансформатора Тр может быть любой конструкции; в данном случае он сделан тороидальным с размерами 56 х 40 х 12 из стали Э-310. На него сначала намотана повышающая обмотка III (1250 витков провода ПЭШО 0,25), затем сразу в два провода первичная I (2 х 45 витков ПЭВ 1,0) и вторичная II (2 х 13 витков ПЭВ 0,3).

Диоды Д5-Д7 типа Д226Б должны иметь обратный ток не более 10 мкА при обратном напряжении 600 В. Если таких диодов подобрать не удается, нужно поставить в каждое плечо выпрямительного моста последовательно по два диода, зашунтировав их резисторами по 75 кОм.

Блок преобразователя устанавливается в моторном отсеке лодки и соединяется с мотором и со схемой электроснабжения лодки с помощью 7- и 4-штырькового разъемов.

12-вольтовый аккумулятор (емкостью 14 А-ч) системы электроснабжения заряжается от катушек штатного магнето через выпрямительный мост на диодах Д242. Для обеспечения нужного зарядного тока на основание магнето ставится вторая катушка, которая при зарядке аккумулятора соединяется последовательно со штатной катушкой. Если, кроме системы зажигания, других потребителей электроэнергии на лодке нет, можно ограничиться одной катушкой. На современных моторах предусмотрена установка штатного выпрямительного моста, который может быть использован и на моторах прежних лет выпуска.

Конструкция электронного зажигания позволяет в течение 10 минут перейти на штатную систему. Для этого на плате магнето сохраняются прерыватели - при монтаже электронной системы контакты прерывателей раздвигают при помощи изоляционных прокладок.

Для перехода на штатное зажигание достаточно снять блок электронного зажигания с мотора на текстолитовой плате, замкнуть перемычками клеммы 1 и 2 с клеммой 5, а 3 и 4 - с 8, выключить питание преобразователя и вынуть изоляционные прокладки из прерывателей. Вторая катушка магнето автоматически переключается на электроснабжение лодки.

Особой наладки система зажигания не требует. При изготовлении системы надо подобрать транзисторы Т1, Т2, ТЗ с коэффициентом усиления по току, равным 45-50. Сопротивление R .1 подбирается таким, чтобы напряжение на базе транзистора Т1 было равным 0,25 В при устойчивом состоянии триггера, а величина резистора К4 должна быть такой, чтобы в устойчивом состоянии транзистор Т4 был открыт. Если преобразователь не будет запускаться (отсутствует напряжение 300 В), нужно проверить правильность соединения обмоток трансформатора. Начала обмоток на схеме обозначены точками.

Тиристор КУ201Л должен быть подобран с напряжением переключения не менее 400 В. При регулировке зазора между замыкателем и датчиком между ними прокладывается плотная бумага толщиной 0,3-0,35 мм. После того как датчик будет прижат и закреплен, бумага удаляется.

Перед установкой на мотор собранную систему зажигания можно проверить. Для имитации запускающих импульсов собирается схема (рис. 92) , выход которой присоединяется к блоку зажигания вместо магнитного датчика.


На вход схемы подается напряжение из бытовой сети 220 В. В разрядниках, установленных вместо свечей, должны образовываться яркие искры, которые возникают с частотой переменного тока в сети, т.е. 50 раз в секунду.

При использовании звукового генератора схему зажигания можно испытать на различных режимах.

Если блок зажигания не будет работать, то причиной может оказаться ошибка в монтаже или несоответствие параметров деталей.

Представленная ниже, схема зажигания автомобиля предназначена для опытных радиолюбителей.

Тем, кто ранее собирал простые схемы блоков зажигания и желающим собрать устройство, из которого, максимально «выжато» все или может почти всё!

За истекшие годы стабилизированный блок зажигания повторили очень многие авто- и радиолюбители, и несмотря на выявленные недостатки можно считать что он проверку временем выдержал. Существенно также, что в литературе пока не появились публикации сходных по простоте конструкций с аналогичными параметрами.
Эти обстоятельства и побудили автора сделать ещё одну попытку основательно улучшить показатели блока, сохранив его простоту.

Основное отличие усовершенствованного блока зажигания от — заметное улучшение его энергетических характеристик. Если у исходного блока максимальная длительность искры не превышала 1,2 мс, причем она могла быть получена лишь на самых низких значениях частоты искрообразования, то у нового длительность искры постоянна во всей рабочей полосе 5…200 Гц и равна 1,2… 1,4 мс. Это значит, что на средних и максимальных оборотах двигателя — а это наиболее часто используемые режимы, длительность искры практически соответствует установившимся и настоящее время требованиям.

Ощутимо изменилась и мощность, подводимая к катушке зажигания. На частоте 20 Гц при катушке Б-115 она достигает 50…52 мДж, а на 200 Гц — около 16 мДж. Расширены также пределы питающего напряжения, в которых блок работоспособен. Уверенное искрообразование при пуске двигателя обеспечивается при бортовом напряжении 3,5 В, но работоспособность блока сохраняется и при 2,5 В. На максимальной частоте искрообразование не нарушается, если питающее напряжение достигает 6 В, а длительность искры — не ниже 0,5 мс.

Указанные результаты получены главным образом за счет изменения режима работы преобразователя, особенно условий его возбуждения. Эти показатели, которые, по мнению автора, находятся на практическом пределе возможностей при использовании всего одного транзистора, обеспечены также применением ферритового магнитопровода в трансформаторе преобразователя.

Как видно из принципиальной схемы блока, показанной на рисунке выше, основные ее изменения относятся к преобразователю, т.е. генератору зарядных импульсов, питающих накопитель-конденсатор С2. Упрощена цепь запуска преобразователя, выполненного, как и прежде, по схеме однотактного стабилизированного блокинг-генератора. Функции пускового и разрядного диодов(соответственно VD3 и VD9 по прежней схеме) выполняет теперь один стабилитрон VD1. Такое решение обеспечивает более надежный запуск генератора после каждого цикла искрообразования путем значительного увеличения начального смещения на эмиттерном переходе транзистора VT1. Это не снизило тем не менее общей надежности блока, поскольку режим транзистора ни по одному из параметров не превысил допустимых значений.

Изменена и цепь зарядки конденсатора задержки С1. Теперь он после зарядки накопительного конденсатора заряжается через резистор R1 и стабилитроны VD1 и VD3. Таким образом, в стабилизации участвуют два стабилитрона, суммарным напряжением которых при их открывании и определяется уровень напряжения на накопительном конденсаторе С2. Некоторое увеличение напряжения на этом конденсаторе скомпенсировано соответствующим увеличением числа витков базовой обмотки и трансформатора. Средний уровень напряжения на накопительном конденсаторе уменьшен до 345…365 В, что повышает общую надежность блока и обеспечивает вместе с тем требуемую мощность искры.

В разрядной цепи конденсатора С1 использован стабистор VD2, позволяющий получить такую же степень перекомпенсации при уменьшении бортового напряжения, как три-четыре обычных последовательных диода. При разрядке этого конденсатора стабилитрон VD1 открыт в прямом направлении, (подобно диоду VD9 исходного блока). Конденсатор С3 обеспечивает увеличение длительности и мощности импульса, открывающего тринистор VS1. Это особенно необходимо при большой частоте искрообразования, когда средний уровень напряжения на конденсаторе С2 существенно снижается.

В блоках электронного зажигания с многократной разрядкой накопительного конденсатора на катушку зажигания длительность искры и в определенной степени ее мощность определяет качество тринистора, поскольку все периоды колебаний, кроме первого, создаются и поддерживаются только энергией накопителя. Чем меньше затраты энергии на каждое включение тринистора, тем большее число запусков будет возможно и тем большее количество энергий (и за большее время) будет передано катушке зажигания. Крайне желательно поэтому подобрать тринистор с минимальным открывающим током.
Хорошим можно считать тринистор, если блок обеспечивает начало искрообразования (с частотой 1…2 Гц) при питании блока напряжением 3 В. Удовлетворительному качеству соответствует работа при напряжении 4…5 В. С хорошим тринистором длительность искры равна 1,3…1,5 мс, при плохом — уменьшается до 1… 1,2 мс.


При этом, как это ни покажется странным, мощность искры в обоих случаях будет примерно одинаковой по причине ограниченной мощности преобразователя. В случае большей длительности конденсатор-накопитель разряжается практически полностью, начальный (он же средний) уровень напряжения на конденсаторе, задаваемый преобразователем, несколько ниже, чем в случае с меньшей длительностью. При меньшей же длительности начальный уровень более высок, но высок и остаточный уровень напряжения на конденсаторе из-за его неполной разрядки.

Таким образом, разность между начальным и конечным уровнями напряжения на накопителе в обоих случаях практически одинакова, а от нее и зависит количество вводимой в катушку зажигания энергии . И все-таки при большей длительности искры достгается лучшее дожигание горючей смеси в цилиндрах двигателя, т.е. повышается его КПД.

При нормальной работе блока формированию каждой искры соответствуют 4,5 периода колебаний в катушке зажигания. Это означает, что искра представляет собой девять знакопеременных разрядов в свече зажигания, непрерывно следующих один за другим.

Нельзя поэтому согласиться с, мнением (изложенным в) о том, что вклад третьего и тем более четвертого периодов колебаний не удается обнаружить ни при каких условиях. На самом деле каждый период вносит свой совершенно конкретный и ощутимый вклад в общую энергию искры, что подтверждают и другие публикации, например . Однако, если источник бортового напряжения включен последовательно с элементами контура (т.е. последовательно с катушкой зажигания и накопителем), сильное затухание, вносимое именно источником, а не другими элементами, действительно, не позволяет обнаружить упомянутый выше вклад. Такое включение как раз и использовано в .

В описываемом блоке источник бортового напряжения в колебательном процессе участия не принимает и упомянутых потерь, естественно, не вносит.

Один из наиболее ответственных узлов блока — трансформатор Т1. Его магнитопровод Ш15х12 изготовлен из оксифера НМ2000. Обмотка I содержит 52 витка провода ПЭВ-2 0,8; II — 90 витков провода ПЭВ-2 0,25; III — 450 витков провода ПЭВ-2 0.25.

Зазор между Ш-образными частями магнитопровода должен быть выдержан с максимально возможной точностью. Для этого при сборке между его крайними стержнями помещают, без клея по гетинаксовой (или текстолитовой) прокладке толщиной 1,2+-0,05 мм, после чего детали магнитопровода стягивают прочными нитками.
Снаружи трансформатор необходимо покрыть несколькими слоями эпоксидной смолы, нитроклея или нитроэмали.
Катушку можно выполнить на прямоугольной шпуле без щек. Первой наматывают обмотку III, в которой каждый слой отделяют от следующего тонкой изоляционной прокладкой, а завершают трехслойной прокладкой. Далее наматывают обмотку II. Обмотку I отделяют от предыдущей двумя слоями изоляции. Крайние витки каждого слоя при намотке на шпуле следует фиксировать любым нитроклеем.

Гибкие выводы катушки лучше всего оформить по окончании всей намотки. Выводить концы обмотки I и II следует в сторону диаметрально противоположную концам обмотки III, но все выводы должны быть на одном из торцов катушки. В таком же порядке располагают и гибкие выводы, которые закрепляют нитками и клеем на прокладке из электрокартона (прессшпана). Перед заливкой выводы маркируют.

Кроме КУ202Н, в блоке можно применить тринистор КУ221 с буквенными индексами А-Г. При выборе тринистора следует принять во внимание, что, как показывает опыт, КУ202Н по сравнению с КУ221 имеют в большинстве случаев меньший ток открывания, но более критичны к параметрам импульса запуска (длительности и частоте). Поэтому для случая использования тринистора из серии КУ221 номиналы элементов цепи удлинения искры необходимо скорректировать — конденсатор С3 должен иметь емкость 0,25 мкФ, а резистор R4 — сопротивление 620 Ом.

Транзистор КТ837 может быть с любыми буквенными индексами, кроме Ж, И, К, Т, У, Ф. Желательно, чтобы статический коэффициент передачи тока не был менее 40. Применение транзистора другого типа нежелательно.

Теплоотвод транзистора должен иметь полезную площадь не менее 250 кв.см. В роли теплоотвода удобно использовать металлический кожух блока или его основание, которые следует дополнить охлаждающими ребрами. Кожух должен обеспечивать и брызгозащищенность блока.

Стабилитрон VD3 также необходимо устанавливать на теплоотвод. В блоке он представляет собой две полосы размерами 60x25x2 мм, согнутые П-образно и вложенные одна в другую. Стабилитрон Д817Б можно заменить последовательной цепью из двух стабилитронов Д816В; при бортовом напряжении 14 В и частоте искрообразования 20 Гц эта пара должна обеспечивать на накопители напряжение 350…360В. Каждый из них устанавливают на небольшой теплоотвод. Стабилитроны подбирают только после выбора и установки тринистора.

Стабилитрон VD1 подборки не требует, но он обязательно должен быть в металлическом корпусе. Для увеличения общей надежности блока целесообразно этот стабилитрон снабдить небольшим теплоотводом в виде обжимки из полоски тонкого дюралюминия.

Стабистор КС119А (VD2) можно заменить тремя диодами Д223А (или другими кремниевыми диодами с импульсным прямым током не менее 0,5 А), включенными последовательно.

Большинство деталей блока смонтированы на печатной плате из фольгированного стеклотекстолита толщиной 1,5 мм. Чертеж платы показан на рис.2. Плата разработана с учетом возможности монтажа деталей при различных вариантах замены.

Для блока, предназначенного работать в местностях с суровым зимним климатом, оксидный конденсатор С1 желательно использовать танталовый с рабочим напряжением не ниже 10 В. Его устанавливают вместо большой перемычки на плате, при этом точки подключения алюминиевого оксидного конденсатора (он-то и показан на плате), пригодного для работы в подавляющем большинстве климатических зон, следует замкнуть перемычкой соответствующей длины. Конденсатор С2-МБГО, МБГЧ или К73-17 на напряжение 400…600 В.

В случае выбора для блока тринистора из серии КУ221 нижнюю по рис.2 часть платы необходимо скорректировать так, как это показано на рис.3. При монтаже тринистора необходимо один из винтов его крепления изолировать от печатной дорожки общего провода.

Проверку работоспособности и тем более регулировку следует проводить именно с такой катушкой зажигания, с которой блок будет работать в дальнейшем. Следует иметь в виду, что включение блока без катушки зажигания, нагруженной запальной свечой, совершенно недопустимо. Для проверки вполне достаточно измерять пиковым вольтметром напряжение на накопительном конденсаторе С2. Таким вольтметром может служить авометр, имеющий предел постоянного напряжения 500 В. Авометр подключают к конденсатору С2 через диод Д226Б (или подобный), а зажимы авометра шунтируют конденсатором емкостью 0,1…0,5мкф, на напряжение 400…600 В.

При номинальном напряжении питания (14 В) и частоте искрообразования 20 Гц напряжение на накопителе должно находиться в пределах 345…365 В. Если напряжение меньше, то прежде всего подбирают тринистор с учетом сказанного выше. Если после подборки будет обеспечено искрообразоеание при понижении напряжения питания до 3 В, но на конденсаторе С2 при номинальном напряжении питания будет повышенное напряжение, следует подобрать стабилитрон VD3 с несколько пониженным напряжением стабилизации.

Далее проверяют блок на высшей частоте искрообраэования (200 Гц), поддерживая номинальное бортовое напряжение. Напряжение на конденсаторе С2 должно находиться в пределах 185…200 В, а потребляемый блоком ток после непрерывной работы в течение 15…20 мин не должен превышать 2,2 А. Если транзистор за это время нагреется выше 60°С при комнатной окружающей температуре, тёплоотводящую поверхность следует несколько увеличить. Конденсатор С3 и резистор R4 подборки, как правило, не требуют. Однако для отдельных экземпляров тринисторов (как того, так и другого типа) может потребоваться корректировка номиналов, если на частоте 200 Гц будет обнаружена неустойчивость в искрообраэовании. Она проявляется обычно в виде кратковременного сбоя в показаниях вольтметра, подключенного к накопителю, и хорошо заметна на слух.

В этом случае следует увеличить емкость конденсатора С3 на 0,1…0,2 мкФ, а если это не поможет, вернуться к прежнему значению и увеличить сопротивление резистора R4 на 100…200 Ом. Одна из этих мер, а иногда и обе вместе, обычно устраняют неустойчивость запуска. Заметим, что увеличение сопротивления уменьшает, а увеличение емкости увеличивает длительность искры.

Если есть возможность воспользоваться осциллографом, то полезно убедиться в нормальном течении колебательного процесса в катушке зажигания и фактической его длительности. До полного затухания должны быть хорошо, различимы 9-11 полуволн, суммарная длительность которых должна быть равна 1,3…1,5 мс на любой частоте искрообразования. Вход X осциллографа следует подключать к общей точке обмоток катушки зажигания.

Типичный вид осциллограммы показан на рис.4. Всплески посредине минусовых полуволн соответствуют единичным импульсам блокинг-генератора при изменении направления тока в катушке зажигания.

Целесообразно проверить также зависимость напряжения на накопительном конденсаторе от бортового напряжения.

Ее вид не должен заметно отличаться от показанного на рис.5.

Изготовленный блок рекомендуется устанавливать в моторном отсеке в передней, более прохладной его части. Искрогасящий конденсатор прерывателя следует отключить и соединить его вывод с соответствующим контактом розетки разъема Х1. Переход на классическое зажигание выполняют, как и в прежней конструкции, установкой вставки-замыкателя Х1.3.

В заключение отметим, что попытки получить столь же «длинную» искру с трансформатором на стальном магнитопроводе, даже из стали самого высокого качества, не приведут к успеху. Наибольшая длительность, которая может быть достигнута, — 0,8…0,85 мс. Тем не менее блок почти без изменений (сопротивление резистора R1 следует уменьшить до 6…8 Ом) работоспособен и с трансформатором на стальном магнитопроводе с указанными намоточными характеристиками, и эксплуатационный качества блока выше, чем у его прототипа .

Литература:
1. Г. Карасев. Стабилизированный блок электронного зажигания. — Радио, 1988, № 9, с. 17; 1989, №5, с.91
2. П.Гацанюк. Усовершенствованная электронная система зажигания. В сб.: «В помощь радиолюбителю», вып: 101, с. 52, — М.: ДОСААФ.
3. А. Синельников. Электроника в автомобиле. — М.:, Радио и связь, 1985, с.46.
4. Ю. Архипов. Полуавтоматический блок зажигания. — Радио, 1990, № 1, с. 31-34; №2, с. 39-42.

Автолюбители изготавливают электронные блоки зажигания, как правило, по классической схеме, состоящей из источника высокого напряжения, накопительного конденсатора и тиристорного ключа. Однако такие устройства имеют ряд существенных недостатков. Первый из них - низкий КПД. Поскольку заряд накопительной емкости можно уподобить заряду конденсатора через резистор, КПД зарядной цепи не превышает 50%. Значит, примерно половина потребляемой преобразователем мощности будет выделяться в виде тепла на транзисторах. Поэтому для них нужны дополнительные теплоотводы.

Второй недостаток состоит в том, что во время разряда конденсатора тиристор закорачивает выход преобразователя и вырабатываемые им колебания срываются.

После разряда накопительной емкости тиристор закрывается, и конденсатор вновь начинает заряжаться плавно нарастающим, от нуля до максимального значения, напряжением с Преобразователя. При больших оборотах двигателя это напряжение может не достичь номинального значения и конденсатор зарядится не полностью. Это приводит к тому, что с увеличением числа оборотов уменьшается энергия искры.

Следующий недостаток объясняется отсутствием стабильности энергии искрообразования при изменении напряжения питания. При запуске двигателя с помощью стартера напряжение аккумуляторной батареи может значительно (до 9-8 В) снижаться. В этом случае блок зажигания выдает слабую искру либо не работает совсем.

Предлагаем описание электронного зажигания, в котором нет указанных недостатков. Работа устройства основана на принципе заряда накопительного конденсатора от стабильного по амплитуде обратного выброса ждущего блокинг-генератора. Величина этого выброса мало зависит от напряжения бортовой сети автомобиля и числа оборотов коленчатого вала двигателя, и, следовательно, энергия искры практически всегда постоянна.

Устройство обеспечивает уровень потенциала на накопительном конденсаторе в пределах 300 ± 30 В при изменении напряжения на аккумуляторной батарее от 7 до 15 В, сохраняя работоспособность в интервале температур -15 - +90°. Предельная частота срабатывания составляет 300 имп/с. Потребляемый ток при f = 200 имп/с не превышает 2 А.

Принципиальная схема электронного зажигания (рис. 1) состоит из ждущего блокинг-генератора на транзисторе V6, трансформатора Т1, цепи формирования запускающих импульсов C3R5, накопительного конденсатора С1, генератора импульсов зажигания на тиристоре V2.

В исходном состоянии, когда контактные пластины прерывателя S1 замкнуты, транзистор V6 закрыт, а конденсатор С3 разряжен. При размыкании контакта он будет заряжаться по цепи R5, RЗ, переход «база - эмиттер» V6. Импульс зарядного тока запускает блокинг-генератор. Передний фронт импульса с обмотки II трансформатора (нижний по схеме вывод) запускает тиристор V2, но, поскольку конденсатор С1 предварительно не был заряжен, на выходе устройства искры не будет.

После того как под действием коллекторного тока V6 произойдет насыщение сердечника трансформатора, блокинг-генератор вновь вернется в ждущий режим. Образующийся при этом выброс напряжения на коллекторе V6, трансформируясь в обмотке III, через диод V3 зарядит конденсатор С1.

При повторном размыкании прерывателя в устройстве произойдут те же процессы с той лишь разницей, что открывшийся передним фронтом импульса тиристор V2 подключит теперь уже заряженный конденсатор к первичной обмотке катушки зажигания. Ток разряда С1 индуцирует во вторичной обмотке бобины высоковольтный импульс.

Устройство нечувствительно к дребезжанию контактных пластин прерывателя. При первом же их размыкании транзистор V6 откроется и останется в этом состоянии до начала насыщения трансформатора независимо от дальнейшего положения прерывателя.

Трансформатор Т1 выполнен на магнитопроводе ШЛ16Х25 с зазором около 50 мк. Обмотка I содержит 60 витков провода ПЭВ-2 1,2, II-60 витков ПЭВ-2 0,31, III - 360 витков ПЭВ-2 0,31. Сердечник трансформатора можно набрать и из Ш-образного железа. Однако из-за неровной обрезки пластин зазор, даже без прокладки, может оказаться большим. В этом случае необходима шлифовка неровностей в местах стыка магнитопровода.

Транзистор КТ805А можно заменить на КТ805Б, но из-за более высокого значения напряжения насыщения на нем будет рассеиваться и несколько большая мощность, что может привести к самозапуску блокинг-генератора при высоких температурах. Поэтому транзистор КТ805Б желательно установить на дополнительном теплоотводе площадью 20 - 30 см 2 .

Вместо диодов Д226Б можно применить КД105Б - КД105Г, КД202К - КД202Н (V1, V3), Д223 (V4).

С1 составлен из двух параллельно соединенных конденсаторов МБГО-1 по 0,5 мкФ на напряжение 500 В. С2 и С3 - МБМ.

Тиристор КУ202Н допустимо заменить на КУ202М или КУ201И, КУ201Л. Поскольку у КУ201 прямое напряжение не превышает 300 В, поэтому напряжение на накопительном конденсаторе снижают до 210 - 230 В путем увеличения его емкости до 2 мкФ. Причем заметного влияния на энергию искры это не оказывает.

Для налаживания устройства нужны авометр и имитатор прерывателя - любое электромагнитное реле, питаемое от звукового – генератора. Реле можно подключить через понижающий трансформатор к осветительной сети. Частота запускающих импульсов будет тогда равна 100 имп/с. С последовательно соединенным диодом частота запуска составит 50 имп/с.

Если детали исправны и выводы трансформатора подсоединены правильно, устройство начинает сразу же работать. Проверяют, чтобы напряжение на конденсаторе С1 составляло 300±30 В при изменении величины питания в указанных выше пределах. Измерять напряжение следует пиковым вольтметром, воспользовавшись схемой, представленной на рисунке 2.

Прибор подключают в точке соединения элементов C1, V2, VЗ и, изменяя величину зазора в сердечнике трансформатора, добиваются необходимого значения напряжения. Если оно заниженное, толщину прокладки увеличивают. При уменьшении зазора напряжение должно падать.

Когда окружающая температура низкая, энергия искры может упасть. В этом случае нужно уменьшить номинал резистора RЗ, поскольку при малом питающем напряжении тиристор V2 может не открыться.

Монтаж устройства выполнен печатным методом на плате размером 95X35 мм, изготовленной из фольгированного гетинакса или стеклотекстолита (рис. 3). Конструктивное выполнение блока электронного зажигания самое различное - в зависимости от имеющегося материала и места установки устройства.

В. БАКОМЧЕВ, г. Бугульма

Заметили ошибку? Выделите ее и нажмите Ctrl+Enter , чтобы сообщить нам.


Работа любого бензинового двигателя внутреннего сгорания была бы невозможна без специальной системы зажигания. Именно она отвечает за воспламенение смеси в цилиндрах в строго определенный момент. Различают несколько возможных вариантов:

  • контактная;
  • бесконтактная;
  • электронная.
Каждая из этих систем зажигания авто имеет свои особенности и конструкцию. Однако вместе с этим, большинство элементов разных вариантов одинаковы.

Одинаковы элементы разных систем зажигания автомобиля

Незаменимым и наиболее востребованным является наличие аккумуляторной батареи. Даже в отсутствие или при поломке генератора при помощи неё можно ещё некоторое время продолжать движение. Генератор также есть неотъемлемой частью, без которой нормальное функционирование любой из систем невозможно. Свечи зажигания, бронепровода, высоковольтная и управляющие элементы дополняют любую из упомянутых систем. Основное различие меду ними заключается в типе, управляющего моментом зажигания и отвечающего за искрообразование устройства.

Контактный прерыватель-распределитель зажигания

Это устройство инициирует возникновение искры высокого, до 30000 В, вольтажа на контактах свечей зажигания. Для этого он соединяется с высоковольтной катушкой, благодаря которой происходит образование высокого напряжения. Сигнал на катушку передается при помощи проводов от специальной контактной группы. При её размыкании кулачковым механизмом происходит образование искры. Момент её возникновения должен строго соответствовать требуемому положению поршней в цилиндрах. Это достигается благодаря четко рассчитанному механизму, передающему вращательное движение на прерыватель-распределитель. Одним из недостатков устройства является влияние механического износа на время возникновения искры и на её качество. Это влияет на качество работы двигателя, а значит может требовать частых вмешательств в регулировку его работы.


Бесконтактное зажигание

Этот тип устройств не зависит на прямую от размыкания контактов. Основную роль в моменте искрообразования здесь играет транзисторный коммутатор и особый датчик. Отсутствие зависимости от чистоты и качества поверхности контактной группы может гарантировать более качественное искрообразование. Однако этот тип зажигания тоже использует прерыватель-распределитель, который отвечает за передачу тока на нужную свечу в нужный момент.


Электронное зажигание

В этой системе воспламенения смеси полностью отсутствуют механические движущиеся части. Благодаря наличию специальных датчиков и особого блока управления, образование искры и момент её раздачи на цилиндры выполняются гораздо более точно и надежно, чем у вышеупомянутых систем. Это дает возможность улучшить работу двигателя, увеличить его мощность и снизить расход топлива. Кроме того, радует и высокая надежность устройств такого типа.


Основные этапы работы системы зажигания

Различают несколько основных этапов работы любых систем зажигания:

  1. накопление необходимого заряда;
  2. высоковольтное преобразование;
  3. распределение;
  4. искрообразование на свечах зажигания;
  5. возгорание смеси.
На любом из этих этапов слаженная и точная работа системы чрезвычайно важна, а значит свой выбор необходимо останавливать на надежных и проверенных устройствах. Лучшей по праву считается электронная система зажигания.

Видео про принцип работы системы зажигания:



Рекомендуем почитать

Наверх