Каковы главные свойства системы. Лекция: система. основные характеристики системы. Группа статических свойств

Для девочек 08.05.2023
Для девочек

Лекция 2: Системные свойства. Классификация систем

Свойства систем.

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика — то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge — возникать, появляться).

  1. Эмерджентность — степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  2. Эмерджентность — свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность — принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность — интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность — сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность — это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность — это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения — действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением . В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития , под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае — системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития — это блуждание в потемках.

Кто не знает, в какую гавань он плывет, для того нет попутного ветра

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость , т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность — свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть — как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость — свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации.

Можно выделить два аспекта взаимодействия:

  • во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Рис. — Классификация систем

Основание (критерий) классификации Классы систем
По взаимодействию с внешней средой Открытые
Закрытые
Комбинированные
По структуре Простые
Сложные
Большие
По характеру функций Специализированные
Многофункциональные (универсальные)
По характеру развития Стабильные
Развивающиеся
По степени организованности Хорошо организованные
Плохо организованные (диффузные)
По сложности поведения Автоматические
Решающие
Самоорганизующиеся
Предвидящие
Превращающиеся
По характеру связи между элементами Детерминированные
Стохастические
По характеру структуры управления Централизованные
Децентрализованные
По назначению Производящие
Управляющие
Обслуживающие

Классификацией называется разбиение на классы по наиболее существенным признакам. Под классом понимается совокупность объектов, обладающие некоторыми признаками общности. Признак (или совокупность признаков) является основанием (критерием) классификации.

Система может быть охарактеризована одним или несколькими признаками и соответственно ей может быть найдено место в различных классификациях, каждая из которых может быть полезной при выборе методологии исследования. Обычно цель классификации ограничить выбор подходов к отображению систем, выработать язык описания, подходящий для соответствующего класса.

Реальные системы делятся на естественные (природные системы) и искусственные (антропогенные).

Естественные системы: системы неживой (физические, химические) и живой (биологические) природы.

Искусственные системы: создаются человечеством для своих нужд или образуются в результате целенаправленных усилий.

Искусственные делятся на технические (технико-экономические) и социальные (общественные).

Техническая система спроектирована и изготовлена человеком в определенных целях.

К социальным системам относятся различные системы человеческого общества.

Выделение систем, состоящих из одних только технических устройств почти всегда условно, поскольку они не способны вырабатывать свое состояние. Эти системы выступают как части более крупных, включающие людей — организационно-технических систем.

Организационная система, для эффективного функционирование которой существенным фактором является способ организации взаимодействия людей с технической подсистемой, называется человеко-машинной системой.

Примеры человеко-машинных систем: автомобиль — водитель; самолет — летчик; ЭВМ — пользователь и т.д.

Таким образом, под техническими системами понимают единую конструктивную совокупность взаимосвязанных и взаимодействующих объектов, предназначенная для целенаправленных действий с задачей достижения в процессе функционирования заданного результата.

Отличительными признаками технических систем по сравнению с произвольной совокупностью объектов или по сравнению с отдельными элементами является конструктивность (практическая осуществляемость отношений между элементами), ориентированность и взаимосвязанность составных элементов и целенаправленность.

Для того чтобы система была устойчивой к воздействию внешних влияний, она должна иметь устойчивую структуру. Выбор структуры практически определяет технический облик как всей системы, так ее подсистем, и элементов. Вопрос о целесообразности применения той или иной структуры должен решаться исходя из конкретного назначения системы. От структуры зависит также способность системы к перераспределению функций в случае полного или частичного отхода отдельных элементов, а, следовательно, надежность и живучесть системы при заданных характеристиках ее элементов.

Абстрактные системы являются результатом отражения действительности (реальных систем) в мозге человека.

Их настроение — необходимая ступень обеспечения эффективного взаимодействия человека с окружающим миром. Абстрактные (идеальные) системы объективны по источнику происхождения, поскольку их первоисточником является объективно существующая действительность.

Абстрактные системы разделяют на системы непосредственного отображения (отражающие определенные аспекты реальных систем) и системы генерализирующего (обобщающего) отображения. К первым относятся математические и эвристические модели, а ко вторым — концептуальные системы (теории методологического построения) и языки.

На основе понятия внешней среды системы разделяются на: открытые, закрытые (замкнутые, изолированные) и комбинированные. Деление систем на открытые и закрытые связано с их характерными признаками: возможность сохранения свойств при наличии внешних воздействий. Если система нечувствительна к внешним воздействиям ее можно считать закрытой. В противном случае — открытой.

Открытой называется система, которая взаимодействует с окружающей средой. Все реальные системы являются открытыми. Открытая система является частью более общей системы или нескольких систем. Если вычленить из этого образования собственно рассматриваемую систему, то оставшаяся часть — ее среда.

Открытая система связана со средой определенными коммуникациями, то есть сетью внешних связей системы. Выделение внешних связей и описание механизмов взаимодействия «система-среда» является центральной задачей теории открытых систем. Рассмотрение открытых систем позволяет расширить понятие структуры системы. Для открытых систем оно включает не только внутренние связи между элементами, но и внешние связи со средой. При описании структуры внешние коммуникационные каналы стараются разделить на входные (по которым среда воздействует на систему) и выходные (наоборот). Совокупность элементов этих каналов, принадлежащих собственной системе называются входными и выходными полюсами системы. У открытых систем, по крайней мере, один элемент имеет связь с внешней средой, по меньшей мере, один входной полюс и один выходной, которыми она связана с внешней средой.

Для каждой системы связи со всеми подчиненными ей подсистемами и между последним, являются внутренними, а все остальные — внешними. Связи между системами и внешней средой также, как и между элементами системы, носят, как правило, направленный характер.

Важно подчеркнуть, что в любой реальной системе в силу законов диалектики о всеобщей связи явлений число всех взаимосвязей огромно, так что учесть и исследования абсолютно все связи невозможно, поэтому их число искусственно ограничивают. Вместе с тем, учитывать все возможные связи нецелесообразно, так как среди них есть много несущественных, практически не влияющих на функционирование системы и количество полученных решений (с точки зрения решаемых задач). Если изменение характеристик связи, ее исключение (полный разрыв) приводят к значительному ухудшению работы системы, снижению эффективности, то такая связь — существенна. Одна из важнейших задач исследователя — выделить существенные для рассмотрения системы в условиях решаемой задачи связи и отделить их от несущественных. В связи с тем, что входные и выходные полюса системы не всегда удается четко выделить, приходится прибегать к определенной идеализации действий. Наибольшая идеализация имеет место при рассмотрении закрытой системы.

Закрытой называется система, которая не взаимодействует со средой или взаимодействует со средой строго определенным образом. В первом случае предполагается, что система не имеет входных полюсов, а во втором, что входные полюса есть, но воздействие среды носит неизменный характер и полностью (заранее) известно. Очевидно, что при последнем предположении указанные воздействия могут быть отнесены собственно к системе, и ее можно рассматривать, как закрытую. Для закрытой системы, любой ее элемент имеет связи только с элементами самой системы.

Разумеется, закрытые системы представляют собой некоторую абстракцию реальной ситуации, так как, строго говоря, изолированных систем не существует. Однако, очевидно, что упрощение описания системы, заключаются в отказе от внешних связей, может привести к полезным результатам, упростить исследование системы. Все реальные системы тесно или слабо связаны с внешней средой — открытые. Если временный разрыв или изменение характерных внешних связей не вызывает отклонения в функционировании системы сверх установленных заранее пределов, то система связана с внешней средой слабо. В противном случае — тесно.

Комбинированные системы содержат открытые и закрытые подсистемы. Наличие комбинированных систем свидетельствует о сложной комбинации открытой и закрытой подсистем.

В зависимости от структуры и пространственно-временных свойств системы делятся на простые, сложные и большие.

Простые — системы, не имеющие разветвленных структур, состоящие из небольшого количества взаимосвязей и небольшого количества элементов. Такие элементы служат для выполнения простейших функций, в них нельзя выделить иерархические уровни. Отличительной особенностью простых систем является детерминированность (четкая определенность) номенклатуры, числа элементов и связей как внутри системы, так и со средой.

Сложные — характеризуются большим числом элементов и внутренних связей, их неоднородностью и разнокачественностью, структурным разнообразием, выполняют сложную функцию или ряд функций. Компоненты сложных систем могут рассматриваться как подсистемы, каждая из которых может быть детализирована еще более простыми подсистемами и т.д. до тех пор, пока не будет получен элемент.

Определение N1: система называется сложной (с гносеологических позиций), если ее познание требует совместного привлечения многих моделей теорий, а в некоторых случаях многих научных дисциплин, а также учета неопределенности вероятностного и невероятностного характера. Наиболее характерным проявлением этого определения является многомодельность.

Модель — некоторая система, исследование которой служит средством для получения информации о другой системе. Это описание систем (математическое, вербальное и т.д.) отображающее определенную группу ее свойств.

Определение N2: систему называют сложной если в реальной действительности рельефно (существенно) проявляются признаки ее сложности. А именно:

  1. структурная сложность — определяется по числу элементов системы, числу и разнообразию типов связей между ними, количеству иерархических уровней и общему числу подсистем системы. Основными типами считаются следующие виды связей: структурные (в том числе, иерархические), функциональные, каузальные (причинно-следственные), информационные, пространственно-временные;
  2. сложность функционирования (поведения) — определяется характеристиками множества состояний, правилами перехода из состояния в состояние, воздействие системы на среду и среды на систему, степенью неопределенности перечисленных характеристик и правил;
  3. сложность выбора поведения — в многоальтернативных ситуациях, когда выбор поведения определяется целью системы, гибкостью реакций на заранее неизвестные воздействия среды;
  4. сложность развития — определяемая характеристиками эволюционных или скачкообразных процессов.

Естественно, что все признаки рассматриваются во взаимосвязи. Иерархическое построение — характерный признак сложных систем, при этом уровни иерархии могут быть как однородные, так и неоднородные. Для сложных систем присущи такие факторы, как невозможность предсказать их поведение, то есть слабо предсказуемость, их скрытность, разнообразные состояния.

Сложные системы можно подразделить на следующие факторные подсистемы:

  1. решающую, которая принимает глобальные решения во взаимодействии с внешней средой и распределяет локальные задания между всеми другим подсистемами;
  2. информационную, которая обеспечивает сбор, переработку и передачу информации, необходимой для принятия глобальных решений и выполнения локальны задач;
  3. управляющую для реализации глобальных решений;
  4. гомеостазную, поддерживающую динамическое равновесие внутри систем и регулирующую потоки энергии и вещества в подсистемах;
  5. адаптивную, накапливающую опыт в процессе обучения для улучшения структуры и функций системы.

Большой системой называют систему, ненаблюдаемую одновременно с позиции одного наблюдателя во времени или в пространстве, для которой существенен пространственный фактор, число подсистем которой очень велико, а состав разнороден.

Система может быть и большой и сложной. Сложные системы объединяет более обширную группу систем, то есть большие — подкласс сложных систем.

Основополагающими при анализе и синтезе больших и сложных систем являются процедуры декомпозиции и агрегирования.

Декомпозиция — разделение систем на части, с последующим самостоятельным рассмотрением отдельных частей.

Очевидно, что декомпозиция представляют собой понятие, связанное с моделью, так как сама система не может быть расчленена без нарушений свойств. На уровне моделирования, разрозненные связи заменятся соответственно эквивалентами, либо модели систем строится так, что разложение ее на отдельные части при этом оказывается естественным.

Применительно к большим и сложным системам декомпозиция является мощным инструментом исследования.

Агрегирование является понятием, противоположным декомпозиции. В процессе исследования возникает необходимость объединения элементов системы с целью рассмотреть ее с более общих позиций.

Декомпозиция и агрегирование представляют собой две противоположные стороны подхода к рассмотрению больших и сложных систем, применяемые в диалектическом единстве.

Системы, для которых состояние системы однозначно определяется начальными значениями и может быть предсказано для любого последующего момента времени, называются детерминированными.

Стохастические системы — системы, изменения в которых носят случайный характер. При случайных воздействиях данных о состоянии системы недостаточно для предсказания в последующий момент времени.

По степени организованности: хорошо организованные, плохо организованные (диффузные).

Представить анализируемый объект или процесс в виде хорошо организованной системы означает определить элементы системы, их взаимосвязь, правила объединения в более крупные компоненты. Проблемная ситуация может быть описана в виде математического выражения. Решение задачи при представлении ее в виде хорошо организованной системы осуществляется аналитическими методами формализованного представления системы.

Примеры хорошо организованных систем: солнечная система, описывающая наиболее существенные закономерности движения планет вокруг Солнца; отображение атома в виде планетарной системы, состоящей из ядра и электронов; описание работы сложного электронного устройства с помощью системы уравнений, учитывающей особенности условий его работы (наличие шумов, нестабильности источников питания и т. п.).

Описание объекта в виде хорошо организованной системы применяется в тех случаях, когда можно предложить детерминированное описание и экспериментально доказать правомерность его применения, адекватность модели реальному процессу. Попытки применить класс хорошо организованных систем для представления сложных многокомпонентных объектов или многокритериальных задач плохо удаются: они требуют недопустимо больших затрат времени, практически нереализуемы и неадекватны применяемым моделям.

Плохо организованные системы. При представлении объекта в виде плохо организованной или диффузной системы не ставится задача определить все учитываемые компоненты, их свойства и связи между ними и целями системы. Система характеризуется некоторым набором макропараметров и закономерностями, которые находятся на основе исследования не всего объекта или класса явлений, а на основе определенной с помощью некоторых правил выборки компонентов, характеризующих исследуемый объект или процесс. На основе такого выборочного исследования получают характеристики или закономерности (статистические, экономические) и распространяют их на всю систему в целом. При этом делаются соответствующие оговорки. Например, при получении статистических закономерностей их распространяют на поведение всей системы с некоторой доверительной вероятностью.

Подход к отображению объектов в виде диффузных систем широко применяется при: описании систем массового обслуживания, определении численности штатов на предприятиях и учреждениях, исследовании документальных потоков информации в системах управления и т. д.

С точки зрения характера функций различаются специальные, многофункциональные, и универсальные системы.

Для специальных систем характерна единственность назначения и узкая профессиональная специализация обслуживающего персонала (сравнительно несложная).

Многофункциональные системы позволяют реализовать на одной и той же структуре несколько функций. Пример: производственная система, обеспечивающая выпуск различной продукции в пределах определенной номенклатуры.

Для универсальных систем: реализуется множество действий на одной и той же структуре, однако состав функций по виду и количеству менее однороден (менее определен). Например, комбайн.

По характеру развития 2 класса систем: стабильные и развивающиеся.

У стабильной системы структура и функции практически не изменяются в течение всего периода ее существования и, как правило, качество функционирования стабильных систем по мере изнашивания их элементов только ухудшается. Восстановительные мероприятия обычно могут лишь снизить темп ухудшения.

Отличной особенностью развивающихся систем является то, что с течением времени их структура и функции приобретают существенные изменения. Функции системы более постоянны, хотя часто и они видоизменяются. Практически неизменными остается лишь их назначение. Развивающиеся системы имеют более высокую сложность.

В порядке усложнения поведения: автоматические, решающие, самоорганизующиеся, предвидящие, превращающиеся.

Автоматические: однозначно реагируют на ограниченный набор внешних воздействий, внутренняя их организация приспособлена к переходу в равновесное состояние при выводе из него (гомеостаз).

Решающие: имеют постоянные критерии различения их постоянной реакции на широкие классы внешних воздействий. Постоянство внутренней структуры поддерживается заменой вышедших из строя элементов.

Самоорганизующиеся: имеют гибкие критерии различения и гибкие реакции на внешние воздействия, приспосабливающиеся к различным типам воздействия. Устойчивость внутренней структуры высших форм таких систем обеспечивается постоянным самовоспроизводством.

Самоорганизующиеся системы обладают признаками диффузных систем: стохастичностью поведения, нестационарностью отдельных параметров и процессов. К этому добавляются такие признаки, как непредсказуемость поведения; способность адаптироваться к изменяющимся условиям среды, изменять структуру при взаимодействии системы со средой, сохраняя при этом свойства целостности; способность формировать возможные варианты поведения и выбирать из них наилучший и др. Иногда этот класс разбивают на подклассы, выделяя адаптивные или самоприспосабливающиеся системы, самовосстанавливающиеся, самовоспроизводящиеся и другие подклассы, соответствующие различным свойствам развивающихся систем.

Примеры: биологические организации, коллективное поведение людей, организация управления на уровне предприятия, отрасли, государства в целом, т.е. в тех системах, где обязательно имеется человеческий фактор.

Если устойчивость по своей сложности начинает превосходить сложные воздействия внешнего мира — это предвидящие системы: она может предвидеть дальнейший ход взаимодействия.

Превращающиеся — это воображаемые сложные системы на высшем уровне сложности, не связанные постоянством существующих носителей. Они могут менять вещественные носители, сохраняя свою индивидуальность. Науке примеры таких систем пока не известны.

Систему можно разделить на виды по признакам структуры их построения и значимости той роли, которую играют в них отдельные составные части в сравнение с ролями других частей.

В некоторых системах одной из частей может принадлежать доминирующая роль (ее значимость >> (символ отношения «значительного превосходства») значимость других частей). Такой компонент — будет выступать как центральный, определяющий функционирование всей системы. Такие системы называют централизованными.

В других системах все составляющие их компоненты примерно одинаково значимы. Структурно они расположены не вокруг некоторого централизованного компонента, а взаимосвязаны последовательно или параллельно и имеют примерно одинаковые значения для функционирования системы. Это децентрализованные системы.

Системы можно классифицировать по назначению. Среди технических и организационных систем выделяют: производящие, управляющие, обслуживающие.

В производящих системах реализуются процессы получения некоторых продуктов или услуг. Они в свою очередь делятся на вещественно-энергетические, в которых осуществляется преобразование природной среды или сырья в конечный продукт вещественной или энергетической природы, либо транспортирование такого рода продуктов; и информационные — для сбора, передачи и преобразования информации и предоставление информационных услуг.

Назначение управляющих систем — организация и управление вещественно-энергетическими и информационными процессами.

Обслуживающие системы занимаются поддержкой заданных пределов работоспособности производящих и управляющих систем.

управление менеджмент хозяйственный

Характеристика - то, что отражает некоторое свойство системы.

Из определения "системы" следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают.

Это свойство эмерджентности (от анг. emerge - возникать, появляться).

Эмерджентность - свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность - интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность - сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность - это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность - это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения - действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития, под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов "развитие" и "движение" позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае - системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности.

Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития - это блуждание в потемках.

Поведение системы определяется характером реакции на внешние воздействия.

Фундаментальным свойством систем является устойчивость, т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Если перечисленные формы устойчивости простых систем (кроме прочности) касается их поведения, то определяющая форма устойчивости сложных систем носят в основном структурный характер.

Надежность - свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть - как активное подавление вредных качеств. Таким образом, надежность является более пассивной формой, чем живучесть.

Адаптируемость - свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации. Можно выделить два аспекта взаимодействия:

Во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);

Среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антагонистическую по отношению к исследуемой системе.3. Характеристики строения систем

Система может быть представлена простым перечислением элементов, или "чёрным ящиком" (моделью "вход - выход"). Однако чаще всего при исследовании объекта такое представление недостаточно, так как требуется выяснить, что собой представляет объект, что в нём обеспечивает выполнение поставленной цели, получение требуемых результатов. В этих случаях систему отображают путём расчленения на подсистемы, компоненты, элементы с взаимосвязями, которые могут носить различный характер, и вводят понятие структуры.

Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может изменяться.

Структуры могут быть представлены в матричной форме, в форме теоретико-множественных описаний, с помощью языка топологии, алгебры и других средств моделирования систем.

Структуры, особенно иерархические, могут помочь в раскрытии неопределённости сложных систем. Иными словами, структурные представления систем могут являться средством их исследования. В связи с этим полезно выделить и исследовать определённые виды (классы) структур.

В соответствии с задачами системного исследования можно выделить два типа определения системы - дескриптивное и конструктивное.

Дескриптивное (описательное) - определение системы через ее свойства, через внешние проявления. Например, ключ - это предмет, легко открывающий замок.

Конструктивное определение - описание через элементы системы, связанные с основным системообразующим фактором - с функцией. В конструктивном плане система рассматривается как единство входа, выхода и процессора (преобразователя), предназначенных для реализации определенной функции.

Система обладает рядом свойств.

Свойства системы - это качества элементов, дающие возможность количественного описания системы, выражения ее в определенных величинах.

Базовые свойства систем сводятся к следующему:

  • · система стремится сохранить свою структуру (это свойство основано на объективном законе организации - законе самосохранения);
  • · система имеет потребность в управлении (существует набор потребностей человека, животного, общества, стада животных и большого социума);
  • · в системе формируется сложная зависимость от свойств входящих в нее элементов и подсистем (система может обладать свойствами, не присущими ее элементам, и может не иметь свойств своих элементов). Например, при коллективной работе у людей может возникнуть идея, которая бы не пришла в голову при индивидуальной работе; коллектив, созданный педагогом Макаренко из беспризорных детей, не воспринял воровства, матерщины, беспорядка, свойственных почти всем его членам.

Помимо перечисленных свойств большие системы обладают свойствами эмерджентности, синергичности и мультипликативности.

Свойство эмерджентности - это 1) одно из первично-фундаментальных свойств больших систем, означающее, что целевые функции отдельных подсистем, как правило, не совпадают с целевой функцией самой БС; 2) появление качественно новых свойств у организованной системы, отсутствующих у ее элементов и не характерных для них.

Свойство синергичности - одно из первично-фундаментальных свойств больших систем, означающее однонаправленность действий в системе, которое приводит к усилению (умножению) конечного результата.

Свойство мультипликативности - одно из первично-фундаментальных свойств больших систем, означающее, что эффекты, как положительные, так и отрицательные, в БС обладают свойством умножения.

Каждая система имеет входное воздействие, систему обработки, конечные результаты и обратную связь

Рисунок 1.- Схема функционирования системы

Итак, состоянием системы называется совокупность существенных свойств, которыми система обладает в каждый момент времени.

Под свойством понимают сторону объекта, обуславливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.

Характеристика -- то, что отражает некоторое свойство системы.

Какие свойства систем известны.

Из определения «системы» следует, что главным свойством системы является целостность, единство, достигаемое посредством определенных взаимосвязей и взаимодействий элементов системы и проявляющиеся в возникновении новых свойств, которыми элементы системы не обладают. Это свойство эмерджентности (от анг. emerge -- возникать, появляться) .

  • 1. Эмерджентность -- степень несводимости свойств системы к свойствам элементов, из которых она состоит.
  • 2. Эмерджентность -- свойство систем, обусловливающее появление новых свойств и качеств, не присущих элементам, входящих в состав системы.

Эмерджентность -- принцип противоположный редукционизму, который утверждает, что целое можно изучать, расчленив его на части и затем, определяя их свойства, определить свойства целого.

Свойству эмерджентности близко свойство целостности системы. Однако их нельзя отождествлять.

Целостность системы означает, что каждый элемент системы вносит вклад в реализацию целевой функции системы.

Целостность и эмерджентность -- интегративные свойства системы.

Наличие интегративных свойств является одной из важнейших черт системы. Целостность проявляется в том, что система обладает собственной закономерностью функциональности, собственной целью.

Организованность -- сложное свойство систем, заключающиеся в наличие структуры и функционирования (поведения). Непременной принадлежностью систем является их компоненты, именно те структурные образования, из которых состоит целое и без чего оно не возможно.

Функциональность -- это проявление определенных свойств (функций) при взаимодействии с внешней средой. Здесь же определяется цель (назначение системы) как желаемый конечный результат.

Структурность -- это упорядоченность системы, определенный набор и расположение элементов со связями между ними. Между функцией и структурой системы существует взаимосвязь, как между философскими категориями содержанием и формой. Изменение содержания (функций) влечет за собой изменение формы (структуры), но и наоборот.

Важным свойством системы является наличие поведения -- действия, изменений, функционирования и т.д.

Считается, что это поведение системы связано со средой (окружающей), т.е. с другими системами с которыми она входит в контакт или вступает в определенные взаимоотношения.

Процесс целенаправленного изменения во времени состояния системы называется поведением. В отличие от управления, когда изменение состояния системы достигается за счет внешних воздействий, поведение реализуется исключительно самой системой, исходя из собственных целей.

Поведение каждой системы объясняется структурой систем низшего порядка, из которых состоит данная система, и наличием признаков равновесия (гомеостаза). В соответствии с признаком равновесия система имеет определенное состояние (состояния), которое являются для нее предпочтительным. Поэтому поведение систем описывается в терминах восстановления этих состояний, когда они нарушаются в результате изменения окружающей среды.

Еще одним свойством является свойство роста (развития). Развитие можно рассматривать как составляющую часть поведения (при этом важнейшим).

Одним из первичных, а, следовательно, основополагающих атрибутов системного подхода является недопустимость рассмотрения объекта вне его развития, под которым понимается необратимое, направленное, закономерное изменение материи и сознания. В результате возникает новое качество или состояние объекта. Отождествление (может быть и не совсем строгое) терминов «развитие» и «движение» позволяет выразиться в таком смысле, что вне развития немыслимо существование материи, в данном случае -- системы. Наивно представлять себе развитие, происходящее стихийно. В неоглядном множестве процессов, кажущихся на первый взгляд чем-то вроде броуновского (случайного, хаотичного) движения, при пристальном внимании и изучении вначале как бы проявляются контуры тенденций, а затем и довольно устойчивые закономерности. Эти закономерности по природе своей действуют объективно, т.е. не зависят от того, желаем ли мы их проявления или нет. Незнание законов и закономерностей развития -- это блуждание в потемках.

Поведение системы определяется характером реакции на внешние воздействия. Фундаментальным свойством систем является устойчивость, т.е. способность системы противостоять внешним возмущающим воздействиям. От нее зависит продолжительность жизни системы.

Простые системы имеют пассивные формы устойчивости: прочность, сбалансированность, регулируемость, гомеостаз. А для сложных определяющими являются активные формы: надежность, живучесть и адаптируемость.

Надежность -- свойство сохранения структуры систем, несмотря на гибель отдельных ее элементов с помощью их замены или дублирования, а живучесть -- как активное подавление вредных качеств.

Адаптируемость -- свойство изменять поведение или структуру с целью сохранения, улучшения или приобретение новых качеств в условиях изменения внешней среды. Обязательным условием возможности адаптации является наличие обратных связей.

Всякая реальная система существует в среде. Связь между ними бывает настолько тесной, что определять границу между ними становится сложно. Поэтому выделение системы из среды связано с той или иной степенью идеализации. Можно выделить два аспекта взаимодействия:

  • · во многих случаях принимает характер обмена между системой и средой (веществом, энергией, информацией);
  • · среда обычно является источником неопределенности для систем.

Воздействие среды может быть пассивным либо активным (антогонистическим, целенаправленно противодействующее системе).

Поэтому в общем случае среду следует рассматривать не только безразличную, но и антогонистическую по отношению к исследуемой системе.

Всего выделяют 30 свойств систем, которые предлагается подразделять на четыре группы:

  • 1) свойства, характеризующие сущность и сложность систем;
  • 2)свойства, характеризующие связь системы с внешней средой;
  • 3)свойства, характеризующие методологию целеполагания системы;
  • 4)свойства, характеризующие параметры функционирования и развития системы.

Под системой же следует понимать определенную целостность, состоящую из взаимозависимых частей, каждая из которых вносит свой вклад в функционирование целого. Следовательно, главной задачей руководителя является необходимость видеть организацию в целом, в единстве составляющих ее частей, которые прямо и косвенно взаимодействуют друг с другом, и с внешним миром. Он должен учитывать, что любое, даже частное управленческое воздействие на какой-либо компонент организации обязательно приводит к многочисленным, а часто непредсказуемым последствиям. Их-то и необходимо учитывать в управлении; для этого надо знать, каковы те основные законы, по которым строятся системы.

Исследование сущности управления следует начинать, как отмечает В. А. Елисеев, с определения его компонентов и взаимосвязей между ними и внешней средой, различия управления функционированием системы в заданных условиях и управления развитием системы. Цель управления в первом случае -- ликвидация внутренних и внешних возмущений без изменения выходных параметров системы, а во втором -- перемена входных и выходных параметров в соответствии с изменениями внешней среды.

Регулирование системы обеспечивает такую ее деятельность, при которой выравнивается состояние выхода системы по заданной норме. Следовательно, главная задача сводится к установлению заданного состояния функционирования системы, предусмотренного планированием как упреждающим управлением. Сложность управления зависит, прежде всего, от количества изменений в системе и ее окружения. Все изменения имеют определенные закономерности или носят случайный характер.

В. А. Елисеев сущность управления рассматривает как совокупность следующих понятий: организация управления, процесс управления и информация.

Об организации управления можно говорить только в том случае, когда выделены цель и объект управления. Поэтому эффектность организации управления в значительной степени зависит от четкости формулирования целей управления.

Существовавшие до этого подхода школы делали главный акцент на прогрессе управления как таковом. Системный же подход показал, что не меньшей, если не большей, сложностью обладает сам объект управления. Не только управление, но и то, что управляется, имеет свою логику, свои законы и они системны по своей природе. Следовательно, эффективное управление обязательно должно учитывать и их, а для этого -- знать и уметь их использовать.

Термин «система» употребляется в различных науках. Соответственно, разных ситуациях применяются различные определения системы: от философских до формальных. Для целей курса лучше всего подходит следующее определение: система – совокупность элементов, объединённых связями и функционирующих совместно для достижения цели.

Системы характеризуются рядом свойств, основные из которых делятся на три группы: статические, динамические и синтетические.

1.1 Статические свойства систем

Статическими свойствами называются особенности некоторого состояния системы. Это то чем обладает система в любой фиксированный момент времени.

Целостность. Всякая система выступает как нечто единое, целое, обособленное, отличающееся от всего остального. Это свойство называется целостностью системы. Оно позволяет разделить весь мир на две части: систему и окружающую среду.

Открытость. Выделяемая, отличаемая от всего остального система не изолирована от окружающей среды. Наоборот, они связаны и обмениваются различными видами ресурсов (веществом, энергией, информацией и т.д.). Эта особенность обозначается термином «открытость».

Связи системы со средой носят направленный характер: по одним среда влияет на систему (входы системы), по другим система оказывает влияние на среду, что-то делает в среде, что-то выдаёт в среду (выходы системы). Описание входов и выходов системы называется моделью чёрного ящика. В такой модели отсутствует информация о внутренних особенностях системы. Несмотря на кажущуюся простоту, такой модели зачастую вполне достаточно для работы с системой.

Во многих случаях при управлении техникой или людьми информация только о входах и выходах системы позволяет успешно достигать цели. Однако для этого модель должна отвечать определённым требованиям. Например, пользователь может испытывать затруднения, если не будет знать, что в некоторых моделях телевизоров кнопку включения нужно не нажимать, а вытягивать. Поэтому для успешного управления модель должна содержать всю информацию, необходимую для достижения цели. При попытке удовлетворить это требование может возникнуть четыре типа ошибок, которые проистекают из того, что модель всегда содержит конечное число связей, тогда как у реальной системы количество связей неограниченно.

Ошибка первого рода возникает в том случае, когда субъект ошибочно рассматривает связь как существенную и принимает решение о её включении в модель. Это приводит к появлению в модели лишних, ненужных элементов. Ошибка второго рода, напротив, совершается тогда, когда принимается решение об исключении из модели якобы несущественной связи, без которой, на самом деле, достижение цели затруднено или вообще невозможно.

Ответ на вопрос о том, какая из ошибок хуже, зависит от контекста, в котором он задаётся. Понятно, что использование модели, содержащей ошибку, неизбежно ведёт к потерям. Потери могут быть небольшими, приемлемыми, нетерпимыми и недопустимыми. Урон, наносимый ошибкой первого рода связан с тем, что информация, внесённая ею, лишняя. При работе с такой моделью придётся тратить ресурсы на фиксацию и обработку лишней информации, например, тратить на неё память ЭВМ и время обработки. На качестве решения это, возможно, и не скажется, а на стоимости и своевременности скажется обязательно. Потери от ошибки второго рода – урон от того, что информации для полного достижения цели не хватит, цель не может быть достигнута в полной мере.

Теперь ясно, что хуже та ошибка, потери от которой больше, а это зависит от конкретных обстоятельств. Например, если время является критическим фактором, то ошибка первого рода становится гораздо более опасной, чем ошибка второго рода: вовремя принятое, пусть не наилучшее, решение предпочтительнее оптимального, но запоздавшего.

Ошибкой третьего рода принято считать последствия незнания. Для того, чтобы оценивать существенность некоторой связи, нужно знать, что она вообще есть. Если это не известно, то вопрос о включении связи в модель вообще не стоит. В том случае, если такая связь несущественна, то на практике её наличие в реальности и отсутствие в модели будет незаметно. Если же связь существенна, то возникнут трудности, аналогичные трудностям при ошибке второго рода. Разница состоит в том, что ошибку третьего рода сложнее исправить: для этого необходимо добывать новые знания.

Ошибка четвёртого рода возникает при ошибочном отнесении известной существенной связи к числу входов или выходов системы. Например, точно установлено, что в Англии 19-го века здоровье мужчин, носящих цилиндры, значительно превосходило здоровье мужчин, носящих кепки. Навряд ли из этого следует, что вид головного убора можно рассматривать как вход для системы прогнозирования состояния здоровья.

Внутренняя неоднородность систем, раличимость частей. Если заглянуть внутрь «чёрного ящика», то выяснится, что система неоднородна, не монолитна. Можно обнаружить, что различные качества в разных частях системы отличаются. Описание внутренней неоднородности системы сводится к обособлению относительно однородных участков, проведению границ между ними. Так появляется понятие о частях системы. При более детальном рассмотрении оказывается, что выделенные крупные части тоже неоднородны, что требует выделять ещё более мелкие части. В результате получается иерархическое описание частей системы, которое называется моделью состава.

Информация о составе системы может использоваться для работы с системой. Цели взаимодействия с системой могут быть различными, в связи с чем могут различаться и модели состава одной и той же системы. На первый взгляд различить части системы нетрудно, они «бросаются в глаза». В некоторых системах части возникают произвольно, в процессе естественного роста и развития (организмы, социумы и т.д.). Искусственные системы заведомо собираются из заранее известных частей (механизмы, здания и т.д.). Есть и смешанные типы систем, такие как заповедники, сельскохозяйственные системы. С другой стороны, с точки зрения ректора, студента, бухгалтера и хозяйственника университет состоит из разных частей. Самолёт состоит из разных частей с точки зрения пилота, стюардессы, пассажира. Трудности создания модели состава можно представить тремя положениями.

Во-первых, целое можно делить на часть по-разному. При этом способ деления определяется поставленной целью. Например, состав автомобиля по разному представляют начинающим автолюбителям, будущим профессиональным водителям, слесарям, готовящимся к работе в автосервисе, продавцам в автомагазинах. Естественно задать вопрос о том, существуют ли части системы «на самом деле»? Ответ содержится в формулировке рассматриваемого свойства: речь идёт о различимости, а не о разделимости частей. Можно различать нужные для достижения цели части системы, но нельзя разделять их.

Во-вторых, количество частей в модели состава зависит и от того, на каком уровне остановить дробление системы. Части на конечных ветвях получающегося иерархического дерева называются элементами. В различных обстоятельствах прекращение декомпозиции производится на разных уровнях. Например, при описании предстоящих работ приходится давать опытному работнику и новичку инструкции разной степени подробности. Таким образом, модель состава зависит от того, что считать элементарным. Встречаются случаи, когда элемент имеет природный, абсолютный характер (клетка, индивид, фонема, электрон).

В-третьих, любая система является частью большей системы, а иногда и нескольких систем сразу. Такую метасистему также можно делить на подсистемы по-разному. Это означает, что внешняя граница системы имеет относительный, условный характер. Определение границ системы производится с учётом целей субъекта, который будет использовать модель системы.

Структурированность. Свойство структурированности заключается в том, что части системы не изолированы, не независимы друг от друга; они связаны между собой, взаимодействуют друг с другом. При этом свойства системы существенно зависят от того, как именно взаимодействуют её части. Поэтому так частот важна информация о связях элементов системы. Перечень существенных связей между элементами системы называется моделью структуры системы. Наделённость любой системы определённой структурой и называется структурированностью.

Понятие структурированности дальше углубляет представление о целостности системы: связи как бы скрепляют части, удерживают их как целое. Целотность, отмеченная ранее как внешнее свойство, получает подкрепляющее объяснение изнутри системы – через структуру.

При построении модели структуры также встречаются определённые трудности. Первая из них связана с тем, что модель структуры определяется после того, как выбирается модель состава, и зависит от того, каков именно состав системы. Но даже при фиксированном составе модель структуры вариабельно. Связано это с возможностью по-разному определить существенность связей. Например, современному менеджеру рекомендуется наряду с формальной структурой его организации учитывать существование неформальных отношений между работниками, которые тоже влияют на функционирование организации. Вторая трудность проистекает из того, что каждый элемент системы, в свою очередь, представляет собой «маленький чёрный ящичек». Так что все четыре типа ошибок возможны при определении входов и выходов каждого элемента, включаемого в модель структуры.

Многим знакома фраза из фильма Эндрю и Лоуренса Вачовски: "Матрица - это система. Она и есть наш враг". Однако стоит разобраться в понятиях, терминах, а также в возможностях и свойствах системы. Так ли она страшна, как ее представляют во многих фильмах и литературных произведениях? О характеристиках и свойствах системы и примерах их проявления пойдет речь в статье.

Значение термина

Слово «система» греческого происхождения (σύστημα), обозначающее в дословном переводе целое, состоящее из соединенных частей. Однако понятие, скрывающееся под этим термином, гораздо многограннее.

Хотя в современной жизни практически все вещи рассматриваются как нельзя дать единственно правильное определение этому понятию. Как ни странно, происходит это из-за проникновения теории систем буквально во все

Еще в начале двадцатого века велись дискуссии о различии свойств линейных систем, исследуемых в математике, логике, от особенностей живых организмов (примером научной обоснованности в данном случае является теория функциональных систем П. К. Анохина). На современном этапе принято выделять ряд значений этого термина, которые образуются в зависимости от анализируемого объекта.

В двадцать первом веке появилось более подробное объяснение греческого термина, а именно: «целостность, состоящая из элементов, которые связаны между собой и находятся в определенных отношениях». Но это общее описание значения слова не отражает свойств системы, анализируемой наблюдателем. В связи с этим понятие будет приобретать новые грани толкования в зависимости от рассматриваемого объекта. Неизменными останутся лишь понятия целостности, основных свойств системы и ее элементов.

Элемент как часть целостности

В теории систем принято рассматривать целое как взаимодействие и отношения определенных элементов, которые, в свою очередь, являются единицами с определенными свойствами, не подлежащими дальнейшему членению. Параметры рассматриваемой части (или свойства элемента системы), как правило, описываются при помощи:

  • функций (выполняемые рассматриваемой единицей действия в рамках системы);
  • поведения (взаимодействие с внешней и внутренней средой);
  • состояния (условие нахождения элемента с измененными параметрами);
  • процесса (смена состояний элемента).

Стоит обратить внимание на то, что элемент системы не равнозначен понятию «элементарность». Все зависит от масштабов и сложности рассматриваемого объекта.

Если обсуждать систему свойств человека, то элементами будут выступать такие понятия, как сознание, эмоции, способности, поведение, личность, которые, в свою очередь, сами могут быть представлены как целостность, состоящая из элементов. Из этого следует вывод, что элемент может рассматриваться как субсистема рассматриваемого объекта. Начальным этапом в системном анализе и является определение состава «целостности», то есть уточнение всех входящих в нее элементов.

Связи и ресурсы как системообразующие свойства

Любые системы не находятся в изолированном состоянии, они постоянно взаимодействуют с окружающей средой. Для того чтобы вычленить какую-либо «целостность», следует выявить все связи, объединяющие элементы в систему.

Что такое связи и как они влияют на свойства системы.

Связь - взаимная зависимость элементов на физическом или смысловом уровне. По значимости можно выделить следующие связи:

  1. Строения (или структурные): характеризуют в основном физическую составляющую системы (например, благодаря меняющимся связям углерод может выступать как графит, как алмаз или как газ).
  2. Функционирования: гарантируют работоспособность системы, ее жизнедеятельность.
  3. Наследования: случаи, когда элемент «А» является источником для существования «В».
  4. Развития (конструкционные и деструкционные): имеют место либо в процессе усложнения структуры системы, либо наоборот - упрощения или распада.
  5. Организационные: к ним можно отнести социальные, корпоративные, ролевые. Но наиболее интересной группой являются связи управления как позволяющие контролировать и направлять развитие системы в определенное русло.

Наличие тех или иных связей обусловливает свойства системы, отображает зависимости между конкретными элементами. Так же можно проследить использование ресурсов, необходимых для построения и функционирования системы.

Каждый элемент изначально снабжен определенными ресурсами, которые он может передавать иным участникам процесса или обменивать их. Причем обмен может происходить как внутри системы, так и между системой и внешней средой. Классифицировать ресурсы можно следующим образом:

  1. Материальные - представляют собой объекты материального мира: склады, товары, устройства, станки и т. д.
  2. Энергия - сюда включаются все виды, известные на современном этапе развития науки: электрическая, ядерная, механическая и т. д.
  3. Информация.
  4. Человеческие - человек выступает не только как работник, выполняющий некоторые операции, но и как источник интеллектуальных фондов.
  5. Пространство.
  6. Время.
  7. Организационные - в данном случае структура рассматривается как ресурс, недостаток которого может привести даже к распаду системы.
  8. Финансовые - для большинства организационных структур являются основополагающими.

Уровни систематизации в теории систем

Поскольку системы обладают определенными свойствами и признаками, их можно подвергнуть классификации, целью которой является выбор соответствующих подходов и средств описания целостности.

Основные критерии типизации систем

Существует категоризация относительно взаимодействия с внешней средой, структуры и пространственно-временных характеристик. Оценку функциональности систем можно производить по следующим критериям (см. таблицу).

Критерии

Взаимодействие с внешней средой

Открытые - взаимодействующие с внешней средой

Закрытые - проявляющие резистентность по отношению к воздействию внешней среды

Комбинированные - содержат оба вида подсистем

Структура целостности

Простые - включающие небольшое количество элементов и связей

Сложные - характеризуются неоднородностью связей, множественностью элементов и разнообразием структур

Большие - отличаются множественностью и разнородностью структур и подсистем

Выполняемые функции

Специализированные - узкая специализация

Многофункциональные - структуры, выполняющие несколько функций одновременно

Универсальные (например, комбайн)

Развитие системы

Стабильные - структура и функции неизменны

Развивающиеся - имеют высокую сложность, подвергаются структурным и функциональным изменениям

Организованность системы

Хорошо организованные (можно обратить внимание на свойства информационных систем, для которых характерны четкая организация и ранжированность)

Плохо организованные

Сложность поведения системы

Автоматические - запрограммированный ответ на внешнее воздействие с последующим возвращением к гомеостазу

Решающие - основаны на постоянных реакциях на внешние раздражители

Самоорганизующиеся - гибкие реакции на внешние раздражители

Предвидящие - превосходят внешнюю среду по сложности организации, способна предвидеть дальнейшие взаимодействия

Превращающиеся - сложные структуры, не связанные с вещественным миром

Характер связи между элементами

Детерминированные - состояние системы может быть предсказано для любого момента

Стохастические - их изменение носит случайный характер

Структура управления

Централизованные

Децентрализованные

Назначение системы

Управляющие - свойства системы управления сводятся к регулированию информационных и иных процессов

Производящие - характеризуются получением продуктов или услуг

Обслуживающие - поддержка работоспособности систем

Группы свойств системы

Свойством принято называть некоторые характерные признаки и качества элемента или целостности, которые проявляются при взаимодействии с иными объектами. Можно выделить группы свойств, характерные практически для всех существующих общностей. Всего известно двенадцать общих свойств систем, которые разделены на три группы. Информацию смотрите в таблице.

Группа статических свойств

Из названия группы вытекает, что система обладает некоторыми особенностями, которые присущи ей всегда: в любой определенный промежуток времени. То есть это те характеристики, без обладания которыми общность перестает быть таковой.

Целостность - это свойство системы, которое позволяет выделить ее из окружающей среды, определить границы и отличительные черты. Благодаря ему возможно существование устоявшихся связей между элементами в каждый выделенный момент времени, которые позволяют реализовать цели системы.

Открытость - одно из свойств системы, основанное на законе взаимосвязи всего существующего в мире. Суть его в том, что можно найти связи между любыми двумя системами (как входящие, так и выходящие). Как можно заметить, при детальном рассмотрении эти взаимодействия различны (или несимметричны). Открытость свидетельствует о том, что система не существует изолированно от среды и производит обмен ресурсами с ней. Описание этого свойства обычно называют «моделью черного ящика» (со входом, который обозначает влияние среды на целостность, и выходом - влиянием системы на среду).

Внутренняя неоднородность систем. В качестве наглядного примера подойдет рассмотрение свойств нервной системы человека, устойчивость которой обеспечивается многоуровневой, разнородной организацией элементов. Принято рассматривать три основные группы: свойства мозга, отдельных структур нервной системы и конкретных нейронов. Информация о составных частях (или элементах) системы позволяет составить карту иерархических связей между ними. Следует обратить внимание, что в данном случае рассматривается «различимость» частей, а не их «разделимость».

Трудности определения состава системы заключаются в целях исследования. Ведь один и тот же объект можно рассмотреть с точки зрения его ценности, функциональности, сложности внутреннего устройства и т. д. Вдобавок ко всему, большую роль играет умение наблюдателя находить различия элементов системы. Поэтому модель стиральной машины у продавца, технического работника, грузчика, ученого будет абсолютно иной, поскольку перечисленные люди рассматривают ее с разных позиций и с разными установленными целями.

Структурированность - свойство, описывающее взаимосвязи и взаимодействия элементов внутри системы. Связи и отношения элементов составляют модель рассматриваемой системы. Благодаря структурированности поддерживается такое свойство объекта (системы), как целостность.

Группа динамических свойств

Если статические свойства - это то, что можно наблюдать в любой отдельно взятый момент времени, то динамические относятся к разряду подвижных, то есть проявляющихся во времени. Это изменения состояния системы на протяженности определенного отрезка времени. Наглядным примером может служить смена времен года на каком-либо наблюдаемом участке или улице (статические свойства остаются, но видны воздействия динамических). Какие свойства системы относятся к рассматриваемой группе?

Функциональность - определяется воздействием системы на среду. Характерной особенностью является субъективность исследователя в выделении функций, продиктованная поставленными целями. Так, автомобиль, как известно, является «средством передвижения» - это его основная функция для потребителя. Однако покупатель при выборе может руководствоваться и такими критериями, как надежность, комфортность, престижность, дизайн, а также наличие сопутствующих документов и т. д. В данном случае раскрывается многофункциональность такой системы, как машина, и субъективность приоритетов функциональности (поскольку будущий водитель выстроил свою систему главных, второстепенных и незначительных функций).

Стимулируемость - проявляется повсеместно как адаптирование к внешним условиям. Ярким примером являются свойства нервной системы. Воздействие внешнего раздражителя или среды (стимула) на объект способствует изменению или коррекции поведения. Этот эффект подробно описал в своих исследованиях Павлов И. П., а в теории системного анализа он называется стимулируемостью.

Изменчивость системы со временем. Если система функционирует, неизбежны изменения как во взаимодействии со средой, так и в осуществлении внутренних связей и отношений. Можно выделить следующие виды изменчивости:

  • скоростные (быстрые, медленные и т. д.);
  • структурные (изменение состава, структуры системы);
  • функциональные (замена одних элементов другими или изменение их параметров);
  • количественные (увеличение количества элементов структуры не изменяющие ее);
  • качественные (в этом случае изменяются свойства системы при наблюдаемом росте или упадке).

Характер проявления перечисленных изменений может быть различен. Обязательным является условие учета данного свойства при анализе и планировании системы.

Существование в изменяющейся среде. Как система, так и среда, в которой она находится, подвержены изменениям. Для функционирования целостности следует определиться с соотношением скорости изменений внутренних и внешних. Они могут совпадать, могут различаться (опережение или отставание). Важно правильно определить соотношение с учетом особенностей системы и окружающей среды. Наглядным примером может служить вождение автомобиля в экстремальных условиях: водитель действует либо на опережение, либо в соответствии с обстановкой.

Группа синтетических свойств

Описывает отношения системы и среды с точки зрения общего понимания целостности.

Эмерджентность - слово английского происхождения, переводится как «возникать». Термином обозначают появление некоторых свойств, которые проявляются только в системе благодаря наличию связей определенных элементов. То есть речь идет о возникновении свойств, которые нельзя объяснить суммой свойств элементов. Например, детали автомобиля ездить и тем более осуществлять перевозки не в состоянии, но собранные в систему - способны быть средством передвижения.

Неразделимость на части - это свойство, по логике вещей, вытекает из эмерджентности. Удаление какого-либо элемента из системы сказывается на ее свойствах, внутренних и внешних связях. В то же время элемент, «отправленный в свободное плавание», приобретает новые свойства и перестает быть «звеном цепи». Например, шина автомобиля на территории бывшего СССР частенько появляется на клумбах, спортивных площадках, «тарзанках». Но изъятая из системы автомобиля, она утеряла свои функции и стала совершенно иным объектом.

Ингерентность - английский термин (Inherent), который переводится как «неотъемлемая часть чего-либо». От степени «включенности» элементов в систему зависит выполнение ею возложенных на нее функций. На примере свойств элементов в периодической системе Менделеева можно удостовериться в важности учета ингерентности. Так, период в таблице строится исходя из свойств элементов (химических), в первую очередь заряда ядра атома. Свойства вытекают из ее функций, а именно классификация и упорядочение элементов с целью предсказания (или нахождения) новых звеньев.

Целесообразность - любая искусственная система создается с определенной целью, будь то решение какой-либо проблемы, развитие заданных свойств, выпуск требуемой продукции. Именно цель диктует выбор структуры, состава системы, а также связей и отношений между внутренними элементами и внешней средой.

Заключение

В статье изложены двенадцать системных свойств. Классификация систем, однако, гораздо разнообразнее и проводится в соответствии с целью, которую преследует исследователь. Каждая система обладает свойствами, которые отличают ее от множества других общностей. Кроме того, перечисленные свойства могут проявляться в большей или меньшей степени, что продиктовано внешними и внутренними факторами.



Рекомендуем почитать

Наверх