Интерфейсы и протоколы в технических средствах. Что понимать под интерфейсом Современные интерфейсы передачи данных

Стильные 12.04.2023
Стильные

ЛАБОРАТОРНАЯ РАБОТА № 13

Стандартные интерфейсы передачи данных компьютерных систем

Цель работы . Ознакомление с основными интерфейсами передачи данных компьютерных систем.

Задание:

1.Ознакомиться с основными интерфейсами.

2.Определить основные параметры интерфейсов (прерывания, порты ввода-вывода, DMA, скорость обмена данными).

ОСНОВНЫЕ СВЕДЕНИЯ

Интерфейс – коммуникационное устройство (или протокол), позволяющее одному устройствувзаимодействовать с другим. Устанавливает соответствие между выходом одного устройства и входом другого.

С появлением USB (Universal Serial Bus) постепенно уходят в прошлое оставшиеся со времен первых IBM PC реликты, связанные с архитектурой шины ISA: COM и LPT-порты, интерфейс подключения FDD. Чипсеты материнских плат, в которых отсутствует явная поддержка шины ISA, ныне занимают львиную долю рынка. Практически все современные чипсеты поддерживают интерфейс USB, в том числе новой спецификации 2.0. Архитектурой USB предусмотрена топология так называемой «звезды». То есть в системе должен быть корневой (ведущий) концентратор, к которому подключаются периферийные концентраторы, а к последним - устройства USB. Периферийные концентраторы могут подключаться друг к другу, образуя каскады. Всего через один корневой концентратор может быть подключено до 127 устройств (концентраторов и устройств USВ). Однако, учитывая относительно невысокую пропускную способность шины версии 1.0 (до 12 Мбит в секунду), что с учетом служебных расходов составит около 1 Мбайт в секунду, - оптимальным числом следует считать 4-5 устройств. При этом рекомендуется более скоростные устройства подключать ближе к корневому концентратору. Проблема низкой пропускной способности снимается с внедрением спецификации интерфейса USB 2.0, чья пиковая производительность достигает 480 Мбит/с. Такого значения вполне хватает для типичных USB-устройств: принтеров, офисных сканеров, цифровых фотокамер, джойстиков и прочих. Но все же для внешних накопителей, сканеров высокого класса, цифровых видеокамер требуется более скоростной интерфейс, например, SCSI.

Спецификация USB определяет две части интерфейса: внутреннюю и внешнюю. Внутренняя часть делится на аппаратную (собственно корневой концентратор и контроллер USB) и программную (драйверы контроллера, шины, концентратора, клиентов). Внешнюю часть представляют устройства (концентраторы и компоненты) USB. Для обеспечения корректной работы все устройства делятся на классы: принтеры, сканеры, накопители и т. д. Классы устройств и особенности их функционирования подробно описаны в спецификации USВ. При отклонении от этих требований могут возникнуть проблемы с загрузкой драйверов и подключением устройств. Напротив, точное следование спецификации позволяет создавать драйверы для любых устройств сторонним производителям программного обеспечения. Разделение устройств на классы происходит не по их целевому назначению, а по единому способу взаимодействия с шиной USВ. Поэтому драйвер класса принтеров определяет не его разрешение или цветность, а способ передачи (односторонний или двунаправленный) и форматирования данных, порядок инициализации при подключении. Данные по шине USB передаются в различных форматах. Самый простой способ заключается в передаче потока байтов с маркером. При этом маркер путешествует в направлении корневого концентратора от устройства к устройству, а данные передаются при наличии свободной полосы пропускания. Гарантированную полосу пропускания обеспечивает изохронный формат. В этом случае опрос синхронных устройств производится с частотой, требуемой для полосы пропускания. Также производится синхронизация тактовых частот приемника и передатчика. Изохронный режим чаще всего применяют для подключения звуковых устройств, которым требуется постоянная полоса пропускания. Формат прерываний применяют для устройств, работающих в реальном масштабе времени до наступления требуемого события. Опрос таких устройств происходит с фиксированной частотой, а передача данных осуществляется при получении сигнала о произошедшем событии. Формат управления является специфическим и служит для конфигурирования и управления концентраторами и устройствами. Процедура подключения периферии к шине USB происходит «в горячем режиме». Подключенное в свободный порт устройство вызывает перепад напряжения в цепи. Контроллер немедленно направляет запрос на этот порт. Присоединенное устройство принимает запрос и посылает пакет с данными о классе, затем ему присваивается уникальный идентификационный номер. Далее происходит автоматическая загрузка и активация драйвера устройства, его конфигурирование и, тем самым, окончательное подключение. Все, устройство готово к работе! Точно так же происходит инициализация уже подсоединенного и включаемого в сеть устройства.

Графическое обозначение

Порт PS/2

Названные в честь IBM PS/2 эти разъёмы сегодня широко используются в качестве стандартных интерфейсов для клавиатуры и мыши, но они постепенно уступают место USB.

В персональных компьютерах, начиная с AT, клавиатура подключается через разъем к специальному контроллеру (UPI-Universal Peripheral Interface) на системной плате. В самой клавиатуре имеется микроконтроллер, который соединен последовательным каналом с микросхемой универсального интерфейса периферийных устройств. Данные по каналу передаются пакетами по 11 бит, из которых 8 бит отведено под собственно данные, а остальные - под синхронизирующие и управляющие сигналы. Заметим, что последовательный интерфейс клавиатуры не совместим с последовательным интерфейсом RS-232C. Микросхема содержит собственную оперативную память и ПЗУ. Контроллер, установленный в клавиатуре, при нажатии на клавишу определяет координаты замкнутого контакта в матрице и передает контроллеру так называемый «скан-код». В свою очередь, контроллер преобразует поступивший скан-код и направляет его в процессор. Для этой операции монопольно используется линия запроса прерываний IRQ1. Интерфейс PS/2 отличается от AT только разъемом и контроллером, установленным на системной плате. Интерфейс PS/2 использует однополярный сигнал с уровнем +5 В. Передача данных происходит в синхронном режиме. Так как обычная мышь с последовательным интерфейсом RS-232C является асинхронной и для питания используется двуполярный сигнал, она не совместима с портом PS/2. Попытка подсоединить мышь RS-232C через переходник к порту PS/2 может привести к выходу ее из строя. Таким образом, через переходник к разъему PS/2 можно подключать только клавиатуру, а также те мыши RS-232, которые комплектуются специальным переходником.

Интерфейс IDE (ATA)

За долгую историю развития интерфейса IDE (Integtated Drive Electronics - электроника, интегрированная в накопитель) появилось множество обозначений его стандартов. Начнем с уже далеких 80-х годов, когда фирма IBM выпустила компьютер спецификации AT (Advanced Technology - передовая технология). Винчестер этого компьютера был подсоединен к 16-битной шине ISA и управлялся собственным контроллером. Крупнейший производитель жестких дисков фирма Western Digital предложила управляющую электронику встроить в сам винчестер. Согласованный стандарт на такой интерфейс получил название ATA (AT Attachment - подключение к AT) и обеспечил возможность модернизации путем простой замены (или добавления) жестких дисков. Чуть позднее появилось обозначение этого же интерфейса IDE. Ныне под аббревиатурой IDE часто подразумевают вообще все устройства, совместимые с интерфейсом ATА «сверху вниз»: Fast ATA, EIDE, Ultra ATА и прочие. Спецификация ATА определила, что к одному каналу можно подключать два устройства (Master и Slave). Установила режимы обмена данными РIO (0, 1, 2, 4, 5) и DMA (SW 0, 1. 2 и MW0).

Режим PIO (Programmed Input-Output - программный ввод-вывод) предусматривает участие центрального процессора в обмене данными между диском и оперативной памятью. В режиме DMA (Direct Memory Access - прямой доступ к памяти) устройство напрямую общается с системной памятью, перехватывая управление шиной. Протоколы SW (Single Word - однословный) и MW (Multi Word - многословный) определяют, в каком виде передаются данные. Номера режимов указывают на продолжительность цикла обмена и, тем самым, на скорость передачи данных (например, 1 - 240 нc, 2 - 180 нc). В сокращенном виде обычно это записывают так: SW2 DMA. MW1 DMA, PIO2 и т. д. Особенности 16-битной адресации шины ISA не позволяли поддерживать жесткие диски объемом свыше 528 Мбайт.

Интерфейс ATА не мог обеспечить подключения никаких других устройств, кроме жестких дисков. Между тем появились новые компоненты: дисководы CD-ROM, магнитооптика, стримеры, - каждый из которых оснащался собственным интерфейсом от производителя и обычно требовал подключения к слоту ISA уникальной карты расширения, несовместимой с другими устройствами. К тому же и скорость жестких дисков значительно выросла, и режимы, предусмотренные ATА, уже не удовлетворяли современным требованиям. Так появился стандарт на интерфейс ATА-2, который устанавливал более скоростные протоколы РIO (3 и 4), MW DMA (1 и 2), определял новый режим обмена данными Block transfer (передача блоками) и адресацию дискового пространства LBA (Logical Block Addressing - адресация логическими блоками). Кроме того, были расширены команды идентификации диска, выдающие информацию по системным запросам о характеристиках устройства. Как уже говорилось, интерфейс IDE/ATА даже в самых последних реализациях остается 16-битным. Шина же PCI, к которой подключены IDE-контроллеры чипсета материнской платы, является 32-разрядной. Поэтому контроллер составляет из двух переданных подряд 16-битных пакетов один 32-битный и пересылает его дальше по шине. Ясно, что даже в самом скоростном режиме 16-битный пакет, отправляемый с жесткого диска, тормозит работу системы. Именно поэтому для высокопроизводительных устройств предпочитают диски с интерфейсом SCSI. В 1997 г. был принят очередной стандарт АТА-3, фактически имевший, по сравнению с АТА-2, единственный новый элемент - так называемую технологию S.M.A.R.T. (Self-Monitoring Analysis and Reporting Technology - технология самотестирования и анализа). По режимам обмена данными АТА-3 полностью соответствует АТА-2. Существенным шагом вперед в развитии интерфейса стало появление протокола ATAPI (ATA Packet Interface - пакетный интерфейс АТА). Он обеспечивал подключение к каналу IDE компонентов, отличных от жестких дисков. При этом с точки зрения пользователя разницы в доступе к устройствам различного типа не было. Протокол АТАРI требует соответствующей поддержки со стороны BIOS, причем последние версии BIOS могут назначить любое устройство, присоединенное по протоколу ATAPI, загрузочным. Протокол вошел в новый стандарт ATA/ATAPI-4, утвержденный в 1998 г.

Протоколы обмена данными также пополнились новыми стандартами: режимом Ultra DMA mode 2 и режимом коррекции ошибок по контрольной сумме (CRC - Cyclic Redundancy Check). Кроме того, появились многозадачные режимы, то есть режимы параллельного выполнения команд и создания очередей двумя устройствами на одном канале IDE (правда, с существенными ограничениями). Жесткие диски ATA/ATAPI-4 выпускались под обозначением Ultra АТА-33. Достаточно стройную и целостную систему интерфейсов АТА, описанную выше, не преминули запутать конкурирующие между собой производители жестких дисков и других носителей информации. Для того чтобы выделить свою продукцию на рынке, они придумали собственные названия интерфейсов. Первой по этому пути пошла компания Seagate, придумавшая название Fast ATА. На самом деле ее продукт отличается от АТА-2 как раз отсутствием самых быстрых режимов обмена (РIO4 и MW2 DMA). Фирма Quantum «изобрела» название Fast АТА-2 для своего интерфейса, ничем не отличающегося по существу от стандарта АТА-2. Больше всех ситуацию запутала компания Western Digital, придумавшая обозначение EIDE (Enhanced IDE - улучшенный IDE). Этот термин и сейчас достаточно широко применяется в компьютерной индустрии. Если же попытаться определить отличия EIDE от АТА-2, то выясняются удивительные вещи. Оказывается, EIDE целиком включает все спецификации АТА-2 и протокола ATAPI. Таким образом, выражение «жесткий диск с интерфейсом EIDE» по смыслу равнозначно фразе «жесткий диск с интерфейсом АТА-2». Тогда чем же отличается EIDE? Дело в том, что WD придумала хост-адаптер Dual IDE/ATА, позволяющий использовать до четырех устройств. Однако такой адаптер никакого отношения к собственно стандарту на интерфейс IDE не имеет и является для любого компонента IDE/ATА внешним устройством, обеспечивающим обычное функционирование согласно стандартам.

В 1999 г. был принят стандарт ATA/ATAPI-5, а большинство производителей поддержали его реальными продуктами. Протокол Ultra АТА-66 нового стандарта оговаривал режим передачи данных со скоростью до 66 Мбайт/с (спецификация Ultra DMA mode 4). Для подключения таких дисков понадобились новые шлейфы (с чередованием сигнальных проводников и линий, замкнутых на «землю»), имеющие 80 проводников, совместимые, к счастью, с существующими 40-контактными разъемами IDE. Исследования, проводившиеся многими фирмами, позволили еще более расширить полосу пропускания устройств IDE, использующих новый 80-жильный шлейф. Так появилась спецификация АТА/ATAPI-6, определяющая требования к жестким дискам и интерфейсу с пиковой пропускной способностью до 100 Мбайт/с (режим Ultra DMA mode 5). В частности, предусмотрено увеличение LBA с 32 до 64 бит. Поддержка особых режимов передачи потокового видео, меры по уменьшению шумности дисков. Жесткие диски с интерфейсом АТА/ATAPI-6 сейчас представлены достаточно широко и обычно обозначаются продавцами как ATА-100. Возможности дальнейшего совершенствования параллельного интерфейса IDE, несмотря на появление жестких дисков UltraATA-133 практически исчерпаны и потому в качестве перспективного направления рассматривается последовательный интерфейс Serial АТА.

Официальная спецификация на Serial ATA появилась в 2002 году, а годом ранее были представлены первые жесткие диски с новым интерфейсом. Чипсеты на системных платах с поддержкой Serial ATA впервые увидели свет осенью 2002 года. Для прежних системных плат необходимо иметь отдельный контроллер, устанавливаемый в слот PCI, что означает ограничение производительности.

Главное отличие нового интерфейса состоит в принципиально ином - последовательном - способе обмена данными. Данные передаются по восьмижильному кабелю, уровень сигналов составляет 3,3 В. На сегодняшний день реализация интерфейса позволяет достичь пиковой пропускной способности 1,5 Гбит/с (примерно 187 Мбайт/с), однако разработчики обещают в ближайшем времени увеличить этот показатель вдвое. Таким образом, наконец-то полоса пропускания внешнего интерфейса будет соответствовать скорости внутренней передачи данных (между собственно диском и буфером) жестких дисков. Первой летом 2000 г. представила жесткий диск с интерфейсом Serial ATA фирма Seagate.

Интерфейс PCI

PCI (Peripheral Component Interconnect) - соединение внешних компонентов. Разработка интерфейса PCI происходило весной 1991 года в недрах корпорации Intel. Перспективные процессоры 80486 и Pentium требовали новой организации взаимодействия с периферийными компонентами. Инженеры Intel решили начать «с нуля» и в результате разработали шину, напрямую не связанную с системной. Так удалось обеспечить независимость интерфейса от конкретного типа процессора и его параллельную работу с несколькими устройствами PCI. Новый интерфейс оказался несовместимым ни с одним из предшествующих (ISA, VESA) и потребовал разработки набора системных микросхем. С целью обеспечить поддержку сторонних производителей Intel сделала архитектуру и спецификации PCI открытыми, поэтому вскоре образовалась группа заинтересованных организаций, создавшая и утвердившая спецификацию версии 2.1. Уточненная и усовершенствованная спецификация получила обозначение 2.2. Интерфейс PCI предусматривает тактовую частоту шины 33 МГц (вариант PCI 2.2 - до 66 МГц, PCI-X - до 133 МГц), что обеспечивает пиковую пропускную способность до 132 Мбайт/с (до 1064 Мбайт/с для 64-разрядных данных на частоте 133 МГц).

Интерфейс обеспечивает поддержку режима Bus Mastering и автоматической конфигурации компонентов при установке (Plug-and-Play). Все слоты PCI на материнской плате сгруппированы в сегменты, число разъемов в сегменте ограничено четырьмя. Если сегментов несколько, они соединяются посредством так называемых мостов (bridge). В настоящее время PCI является самым распространенным интерфейсом. С его помощью подключают к материнской плате устройства расширения: звуковые карты, контроллеры SCSI, модемы, карты видеозахвата, сетевые карты и прочие компоненты.

Длительная популярность PCI объясняется рядом преимуществ, предоставляемых интерфейсом по сравнению с его предшественниками.

· Во-первых, поддерживается синхронный обмен данными формата 32 или 64 бит. При этом используется метод мультиплексирования (передача адресов и данных по очереди по одним линиям), что позволило снизить число контактов в разъемах.

· Во-вторых, предусмотрена установка компонентов с уровнями сигналов 5В или 3,3В. «Ключи» (пластмассовые перемычки) на разъемах исключают установку плат в «чужой» слот. Возможно изготовление универсальных плат расширения, поддерживающих оба уровня сигналов (что сейчас и делает большинство производителей).

Комбинация частот шины 33 МГц или 66 МГц с разрядностью данных предоставляет достаточно широкий диапазон для выбора пропускной способности шины. Заметим, что при частоте 66 МГц допустим уровень сигнала только 3,3В (а устройства на 33 МГц могут выйти из строя на более высокой частоте).

Спецификация PCI требует поддержки компонентами режима Multiple Bus Mastering (многостороннее управление шиной). В таком режиме устройства перехватывают управление шиной и самостоятельно распределяют ее ресурсы. Специальный таймер, имеющийся на устройстве, определяет максимальное время, в течение которого возможен монопольный доступ.

Один канал контроллера PCI поддерживает до четырех слотов расширения. Для удвоения их числа применяется мост между парой контроллеров. Метод передачи данных по шине называют Linear Burst (метод линейных пакетов). То есть, данные при записи-чтении идут единым пакетом, так как адрес для каждого следующего байта автоматически увеличивается на единицу. Таким образом отпадает необходимость передавать адресный блок. Для ускорения передачи применяется кэширование: поддерживаются методы отложенной «write-back» и сквозной «write-through» записи.

Важной особенностью интерфейса PCI является поддержка протокола Plug-and-Play (PnP). Спецификацией 2.2 определены три типа ресурсов: диапазон памяти, диапазон ввода-вывода и так называемое «пространство конфигурации». Последний ресурс содержит три региона: заголовок (не зависит от конкретного типа устройства), блок устройства, пользовательский блок. Заголовок содержит информацию об изготовителе, классе устройства, другие служебные сведения.

В целом интерфейс PCI справлялся с возложенными на него задачами в рамках присущих ему ограничений. Те же задачи, которые он не мог решить (например, передача больших массивов графических данных с высокой скоростью), были ловко переброшены фирмой Intel на плечи других интерфейсов (например, AGP).

До недавнего времени шина PCI использовалась не только для карт расширения, но и соединяла мосты системного чипсета. Однако существенные ограничения по пиковой пропускной способности стали тормозить рост производительности компьютерной системы. В частности, появление жестких дисков спецификации ATА-100, сетевых карт Gigabyte Ethernet, адаптеров SCSI спецификации Ultra 160, требовало увеличения пропускной способности шины PCI в несколько раз. Попытки усовершенствовать шину вылились в принятие спецификации PCI-X.

64-разрядные слоты интерфейса спецификации PCI-X (поддерживающего тактовую частоту до 133 МГц и передачу данных по протоколам DDR и QDR) пока встречаются только на высокопроизводительных серверах и рабочих станциях, так как увеличение ширины шины и ее рабочих частот привело к значительному удорожанию системной платы. Вместе с тем сам принцип параллельной разделяемой шины себя уже изжил.

Таким образом, срок жизни шины PCI на платформе PC постепенно истекает. Ничего необычного в этом нет - похожая история произошла с шиной ISA, которую уже не встретишь на современных системных платах. Очевидно, что переход на новую локальную шину будет происходить постепенно и сравнительно безболезненно для обычного пользователя. В настоящее время основными претендентами являются интерфейс PCI Express (3GIO), разработанный корпорацией Intel, и шина HyperTransport, предлагаемая фирмой AMD. Причем HyperTransport уже поддерживается многими наборами системной логики.

Интерфейс HyperTransport

Высокоскоростная шина ввода-вывода HyperTransport (HT) предназначена для использования в компьютерных системах, прежде всего в качестве внутренней локальной шины. В сравнении с шиной PCI интерфейс HyperTransport позволяет снизить число проводников на системной плате, устранить задержки, связанные с монополизацией шины устройствами с низкой производительностью, уменьшить энергопотребление и в целом многократно повысить пропускную способность.

Физически технология HyperTransport базируется на улучшенной версии низковольтных дифференциальных сигналов (Low Voltage Differential Signaling, LVDS). Для всех линий (данных, управления, тактовых) используются шины с дифференциальным сопротивлением 100 Ом. Уровень сигнала составляет 1,2 В (в отличие от 2,5 В, установленных спецификацией IEEE LVDS). Благодаря этому длина шины может достигать 24 дюйма (около 61 см) при полосе пропускания на одной линии до 800 Мбит/с. Необходимо заметить, что спецификация HyperTransport предусматривает разделение «восходящих» (Upstream) и «нисходящих» (Downstream) потоков данных (асинхронность). Такой подход обеспечивает возможность существенного увеличения, тактовых частот по сравнению с существующими архитектурами, поскольку каждый сигнал LVDS функционирует в пределах своей физической линии. Кроме того, пакет, объединяющий адреса, команды и данные, всегда кратен 32 бит. Поэтому обеспечивается его безошибочная передача по масштабируемым каналам шириной от 2 до 32 бит. Это позволяет применять единую технологию HyperTransport для соединения потребителей ресурсов шины различной производительности: процессор, оперативная память, видеоконтроллер, низкоскоростные устройства ввода-вывода, используя в каждом случае минимально необходимое число линий. В целом пиковая пропускная способность соединения Hyper Transport достигает 12,8 Гбайт/с (по 6,4 Гбайт/с на нисходящий и восходящий каналы шириной 32 бит при частоте 800 МГц и передаче данных по фронту и спаду сигнала). Для сравнения укажем, что пиковая пропускная способность системной шины (200 МГц) процессора AMD Athlon составляет 2,128 Гбайт/с. Важной особенностью технологии HyperTransport является совместимость с устройствами PCI на уровне протоколов. То есть производителям оборудования не придется писать даже новых драйверов.

Интерфейс SCSI

Часто сравнивают интерфейс SCSI (читается - «скази») исключительно с интерфейсом IDE. На самом деле такое сравнение не совсем корректно: SCSI, в отличие от IDE, позволяет подключать не только носители информации. SCSI является универсальным интерфейсом и до появления IEEE1394 ему практически не было альтернативы в работе с высокоскоростными устройствами. Сегодня максимальная (теоретическая) скорость передачи информации по шине IDE составляет 133 Мбайт/с (протокол Ultra ATA-133), для нового интерфейса Serial ATA - до 150 Мбайт/с. Спецификацией Ultra320 SCSI предусмотрена скорость обмена до 320 Мбайт/с. Реальные преимущества SCSI особенно заметны в многозадачных операционных системах и при обработке непрерывных потоков данных (например, видео). Многие известные производители (в частности, Iwill) выпускают материнские платы со встроенными контроллерами SCSI, где для инициализации требуется собственная система SCSI BIOS. На материнских платах со встроенным контроллером она обычно присутствует в системной BIOS в качестве дополнения. На платах расширения помещают собственную микросхему BIOS. Возможен и вариант (в самых дешевых системах) отсутствия BIOS и обеспечения поддержки интерфейса исключительно драйверами операционной системы.

Стандартные функции SCSI BIOS весьма похожи на функции системной BIOS:

· настройка конфигурации адаптера;

· проверка поверхности жестких дисков;

· форматирование на низком уровне;

· настройка параметров инициализации устройств;

· задание номера загрузочного устройства;

· выбор загрузочного устройства и пр.

Для запоминания и хранения конфигурации SCSI-устройств служит микросхема флэш-памяти (функциональный аналог CMOS системной платы). В системе SCSI взаимодействие между устройствами осуществляется по принципу «отправитель-адресат». Отправитель инициирует запрос и, дождавшись ответа от адресата, начинает обмен данными. Каждое устройство в цепочке имеет уникальный идентификационный (ID) номер в диапазоне от 0 до 7 (в последних спецификациях от 0 до 31), который выставляется специальным переключателем, перемычкой или присваивается автоматически (в современных устройствах). Причем номер 7 по умолчанию присвоен SCSI хост-адаптеру. В свою очередь, устройства, входящие в компонент, имеющий ID, получают номер логического устройства - Logical Unit Number (LUN). Например, при подключении массива из нескольких жестких дисков он получит собственный ID, а каждый жесткий диск - собственный LUN. Таким способом можно выстраивать цепочки до 256 устройств. Хотя в реальных задачах такие конструкции вряд ли потребуются. Данные по шине SCSI передаются в синхронном или асинхронном режимах. В асинхронном режиме адресат подтверждает получение каждого байта, в синхронном - только пакета данных. Начиная со спецификации SCSI-2 появились сценарии, когда весь набор процедур обмена формируется в один пакет и передается целиком. Также возможно независимое выполнение команд устройством. Например, стримеру дается команда на перемотку, и затем он отключается от шины до окончания процесса. В настоящее время действуют несколько спецификаций SCSI, различающихся шириной шины, тактовой частотой, физическим типом интерфейса подключения. Самый первый вариант (SCSI-1) имел 8-битную шину, данные по которой передавались со скоростью 5 Мбайт/с. Последний, Ultra320 SCSI, позволяет передавать данные на скорости 320 Мбайт/с.

К сожалению, различие стандартов на уровень и формат сигналов, электрические характеристики устройств SCSI в разных спецификациях интерфейса существенно затрудняют подключение компонентов разного поколения. Хотя в принципе задача эта решаема в подавляющем большинстве случаев.

Интерфейс AGP

Фирма Intel, обнаружив, что дальнейшее повышение производительности персонального компьютера «упирается» в видеоподсистему, уже сравнительно давно предложила выделить для передачи потока видеоданных отдельную интерфейсную шину - AGP (Accelerated Graphics Port - ускоренный графический порт). Буквально за год этот стандарт вытеснил существовавшие ранее интерфейсы, использовавшиеся видеокартами: ISA, VLB и PCI. Главным преимуществом новой шины стала ее высокая пропускная способность. Если шина ISA позволяла передавать до 5,5 Мбайт/с, VLB -до 130 Мбайт/с (однако при этом чрезмерно загружала центральный процессор), а PCI до 133 Мбайт/с, то шина AGP теоретически имеет пиковую пропускную способность до 2132 Мбайт/с (в режиме передачи 32-разрядных слов).

Компания Intel разрабатывала интерфейс AGP для решения двух основных проблем, связанных с особенностями обработки ЗD-графики на персональном компьютере.

· Во-первых, трехмерная графика требует выделять как можно больше памяти для хранения данных текстур и Z-буфера. Чем больше текстурных карт доступно для ЗD-приложений, тем лучше выглядит картинка на экране монитора. Обычно для Z-буфера используют ту же память, что и для текстур. Разработчики видеоконтроллеров и раньше имели возможность использовать обычную оперативную память для хранения информации о текстурах и Z-буфере, но серьезным ограничением здесь выступала пропускная способность шины PCI. Ширина полосы пропускания PCI оказалась мала для обработки графики в режиме реального времени. Эту проблему компания Intel решила путем внедрения стандарта шины AGP.

· Во-вторых, интерфейс AGP обеспечивает прямое соединение между графической подсистемой и оперативной памятью. Таким образом, выполняются требования вывода ЗD-графики в режиме реального времени и, кроме того, более эффективно используется память буфера кадра (frame buffer), тем самым увеличивается скорость обработки 2D-графики. В действительности шина AGP соединяет графическую подсистему с контроллером системной памяти, разделяя доступ с центральным процессором компьютера. Через AGP возможно подключение единственного типа устройств - графических плат. При этом видеоконтроллеры, встроенные в материнскую плату и использующие интерфейс AGP, не подлежат модернизации. Для контроллера AGP конкретный физический адрес, по которому информация хранится в оперативной памяти, не имеет значения. Это является ключевым решением новой технологии, обеспечивая доступ к графическим данным как к единому блоку памяти.

Спецификация AGP фактически базируется на стандарте PCI версии 2.1, но отличается от него следующими основными особенностями, коренным образом влияющими на производительность:

· шина способна передавать два (AGP2x), четыре (AGP4x) или восемь (AGP8x) блоков данных за один цикл;

· устранена мультиплексированность линий адреса и данных (в PCI для удешевления материнских плат адрес и данные передаются по одним и тем же линиям);
конвейеризация операций чтения/записи, по мнению разработчиков, позволяет устранить влияние задержек в модулях памяти на скорость выполнения этих операций.

Шина AGP поддерживает все стандартные операции шины PCI, поэтому поток данных по ней можно представить как смесь чередующихся AGP и РСI-операций чтения/записи. Операции шины AGP являются раздельными (split). Это означает, что запрос на проведение операции отделен от собственно пересылки данных. Такой подход позволяет AGP-устройству генерировать очередь запросов, не дожидаясь завершения текущей операции. Версия AGP 2.0 благодаря использованию низковольтных электрических спецификаций предусматривает осуществление четырех транзакций (пересылок блока данных) за один такт (режим AGP4x). Версия AGP 3.0 предусматривает пересылку уже восьми блоков данных за такт (режим AGP 8x). В настоящее время, хотя даже возможности AGP4x еще не исчерпаны многими видеокартами, компания Intel продвигает новую спецификацию - AGP Pro. Основное отличие этого интерфейса заключается в возможности управления мощным энергопитанием.

К исходу 2002 года в массовом количестве появились чипсеты, поддерживающие интерфейс AGP версии 3.0 (иногда обозначается как AGP 8x). Двукратное увеличение пропускной способности достигнуто за счет повышения тактовой частоты шины до 66 МГц и применения нового уровня сигналов 0,8 В (в AGP 2.0 использовался уровень 1,5 В). Тем самым при сохранении основных параметров интерфейса удалось повысить пропускную способность шины примерно до 2132 Мбайт/с.

В связи со все более широким проникновением трехмерной графики в различные программные продукты в обозримой перспективе встает вопрос о повышении пропускной способности шины видеокарты. Претендентами на замену AGP выступают новые универсальные интерфейсы локальной шины: HyperTransport и PCI Express.

Стандарт Пропускная способность
AGP 1X 256 Мбайт/с
AGP 2X 533 Мбайт/с
AGP 4X 1066 Мбайт/с
AGP 8X 2133 Мбайт/с

Bluetooth

Единичная Bluetooth-система состоит из модуля, обеспечивающего радиосвязь, и присоединенного к нему хоста, в качестве которого может выступать компьютер или любое периферийное устройство. Bluetooth-модули обычно встраивают в устройство, подключают через доступный порт либо PC-карту. Поскольку все модули с точки зрения сети физически и функционально равноценны, от природы хоста можно абстрагироваться. Модуль состоит из менеджера соединений (link manager), контроллера соединений и приемопередатчика с антенной. Модули могут как соединяться по схеме «точка - точка», так и обеспечивать многоточечные соединения. Два связанных по радио модуля образуют пиконет (piconet). Причем один из модулей играет роль ведущего (master), второй - ведомого (slave). В пиконете не может быть больше восьми модулей: адрес активного участника пиконета, используемый для идентификации, является трехбитным. Уникальный адрес могут иметь семь ведомых модулей (ведущий не имеет адреса), а нулевой адрес зарезервирован для широковещательных (broadcast) сообщений. Для объединения больше восьми устройств в спецификацию введено понятие скэттернет (scatternet, рассеянная сеть). Скэттернет формируется из нескольких независимых пиконетов. Установить связь с модулем, подключенным к другому пиконету, может любой модуль сети, в том числе и ведущий.

Оптимальный радиус действия модуля - до 10м. Диапазон рабочих частот 2,402-2,483 ГГц. Коммуникационный канал Bluetooth имеет пиковую пропускную способность 721 Кбит/с. Для уменьшения потерь и обеспечения совместимости пиконетов частота в Bluetooth перестраивается скачкообразно (1600 скачков/с). Канал разделен на временные слоты (интервалы) длиной 625 мс (время между скачками), в каждый из них устройство может передавать информационный пакет. Для полнодуплексной передачи используется схема TDD (Time-Division Duplex, дуплексный режим с разделением времени). По четным значениям таймера начинает передавать ведущее устройство, по нечетным - ведомое.

Помимо полезных данных пакет содержит код доступа и заголовок. Имеется три вида пакетов: предназначенные только для голоса (обычно 64 Кбайт/с), только для данных и комбинированные. Для передачи разных пакетов предусмотрены два типа связей: асинхронная ACL (Asynchronous Connection-Less) и синхронная SCO (Synchronous Connection-Oriented). Разные пары ведущий-ведомый в пределах пиконета могут использовать различные типы связи. Более того, тип связи может по мере необходимости безо всяких ограничений меняться в течение сеанса связи.

ПОРЯДОК РАБОТЫ

Правой кнопкой мыши нажимаем на значок Мой компьютер, после чего в выпадающем меню выбираем Свойства. Перед нами появляется Свойства системы, где мы выбираем закладку Оборудование. В появившейся закладке нажимаем кнопку Диспечер устройств. Перед нами появляется окно, в котором приведен список всего установленного оборудования на данном компьютере, тут же можно изменить свойства любого устройства. Пример диспечера устройств приведен на рис. 1.

1. IDE ATA/ATAPI контроллеры - это устройства, которые управляют другими устройствами, например жестким диском или CD-ROM, а также поддерживают обмен данными между этими устройствами и компьютером.

Конфигурация контроллера предусматривает выделение необходимых для него системных ресурсов.

В современном мире цифровых технологий их структура базируется на передаче информации между узлами и объектами определённой сети. Надёжность протоколов и способов, используемых при этом, зависит от того, каким образом реализована технология. В частности, это возложено на интерфейсы передачи данных.

Что это такое?

Как следует из официального определения, интерфейс передачи данных — это некая граница между двумя объектами или узлами, которые регламентируются особым принятым стандартом и реализуются с помощью установленных методов, средств и правил.

Говоря простым языком, это своеобразный переходник между узлами, который знает, как передавать данные, что при этом использовать и чего ждать в ответ.

Основные типы интерфейсов передачи данных

С одной из разновидностей сталкивался каждый пользователь компьютера. передачи данных Ethernet. Его первоначальное предназначение — коммуникация между офисными устройствами. Для реализации первых соединений применялась линейная топология, а также простой коаксиальный кабель. Сегодня же данный подход устарел. И теперь в основе сетей лежит топология «звезда», реализуемая и делимая на части маршрутизаторами и коммутаторами. В промышленных сетях по интерфейсу передачи данных Ethernet можно отправлять информацию со скоростями 10, 100 Мбит/с, и реже 1Гбит/с. Подобную производительность гарантирует такая передающая среда, как витая пара или оптоволокно.

Одной из особенностей интерфейса является наличие обязательного MAC адреса, который «вшит» в аппаратную часть оборудования. С помощью него происходит распознавание того узла, который отправил и получил данные. По сути, каждый адрес должен быть уникален. Для этого разработчики устройств делят между собой общее множество значений. За тремя старшими байтами в MAC адресе закреплён свой производитель.

Стоит отметить, что при регистрации MAC это происходит один раз при инициализации сетевого оборудования. Дальнейшее же хранение его ложится на плечи операционной системы. А это означает, что адрес в любой момент можно сменить.

USB

Ещё один часто встречающийся интерфейс последовательной передачи данных — Universal Serial Bus. Практически каждое современное устройство комплектуется той или иной его разновидностью, будь то микроверсия или мини.

Его главной особенностью является использование технологии Plug and Play. Это означает, что любое устройство с интерфейсом USB можно подключить и начать работать, в большинстве случаев избегая установки различных драйверов.

Также особым рядом идёт приведение многих разношёрстных разъёмов и стандартов к одному общему виду. Теперь можно присоединять к компьютеру джойстики, мыши, клавиатуры, жёсткие диски, принтеры и многое другое оборудование, используя один универсальный разъем.

Стоит отметить ещё один плюс USB — подачу питания на одном из контактов. Это позволило подключать внешние жёсткие диски и подобные устройства.

HDMI

Это тоже интерфейс передачи данных, позволяющий передавать медиаданные. В отличие от устаревшего VGA, он может работать не только с видео, но и со звуком. Данный стандарт обладает большой пропускной способностью. Поэтому он применяется для трансляции видео высокой чёткости. Кстати, аббревиатура HDMI именно так и расшифровывается — High Definition Multimedia Interface. Что означает интерфейс для мультимедиа высокой чёткости.

IrDA

Статья была бы не полной без описания интерфейсов передачи данных, позволяющих делать это беспроводным путем. И наверное, IrDA — первопроходец среди них.

Возможно, морально и технически он уже устарел, однако до сих пор встречается на самых разных архаичных устройствах. Его задача — соединить два аппарата с IrDA с помощью инфракрасного излучения. Ограничения стандарта не позволяют использовать его на больших расстояниях. Поэтому для передачи данных, например, между двумя телефонами, приходилось держать их на близком расстоянии друг от друга. Скорость передачи была очень низкой и находилась в диапазоне от 2400 до 115 200 bps.

Bluetooth

Bluetooth пришёл на смену инфракрасному порту и активно используется во многих устройствах для создания связи между ними. Это компьютерные мыши, телефоны, ноутбуки и много других устройств.

Радиус действия интерфейса официально заявлен в 100 метров. Однако на практике, наличие шумов и различных препятствий в виде стен сужают расстояние примерно до 10 метров. Средняя скорость передачи данных по интерфейсу Bluetooth составляет не более 3 Мбит/с.

Wi-Fi

Наверное, нет такого человека, который бы не слышал о данном интерфейсе передачи данных, позволяющем передавать информацию на больших скоростях и на удобных расстояниях.

Основное преимущество стандарта — беспроводное подключение. А это значительная экономия как пространства, так и денежных затрат на кабели и инфраструктуру.

Повсеместное распространение Wi-Fi привело к тому, что с ним поставляются сегодня даже лампочки. То есть интерфейс стал одним из самых популярных. С ним сталкиваются все при покупке нового устройства, будь то телевизор, смартфон или ноутбук.

Технические характеристики Wi-Fi постоянно улучшаются. Теоретически в идеальных условиях он может передавать данные со скоростью до 7 Гбит/с. Средняя же на обычных бытовых устройствах варьируется в пределах от 450 до 1300 Мбит/с при использовании нескольких антенн.

Минусы Wi-Fi

Несмотря на множество преимуществ, у интерфейса имеются и недостатки. Например, большинство устройств способно работать на частоте 2,4 ГГц. Однако многие средства а также некоторые бытовые приборы тоже имеют такой показатель. А это значительно влияет на качество передачи данных, что, в свою очередь, сказывается и на скорости. Однако в последних моделях устройств данную проблему уже решили путем добавления дополнительной рабочей частоты в 5 ГГц.

В России имеются небольшие проблемы с установкой адаптеров Wi-Fi, показатель электромагнитного излучения которых превышает 100 мВт, так как нужно их обязательно регистрировать.

ИНТЕРФЕЙС - это стандартизованная среда turn способ обмена информацией между двумя или более единицами оборудования: приборами, контроллерами, персональный компьютером и т.п.

Интерфейсы информационного обмена между приборами, применяемые в промышленности, могут быть двух типов:

    «точка-точка», соединяющий два прибора между собой;

    мультиприборный, позволяющий подключать более двух приборов на одну линию передачи данных.

Основная характеристика интерфейса - пропускная способность, которая показывает, сколько бит информации передается по интерфейсу за 1 секунду и измеряется в bit per second (bps, Mbps), или бит в секунду (бит/с, Мбит/с). Необходимо учитывать, что эта пропускная способность включает «накладные расходы», связанные со способом передачи данных. Для разных интерфейсов и протоколов доля полезной информации, передаваемой в секунду, может быть от 30 % до 90 % от общей пропускной способности.

ПРОТОКОЛ - это стандартизованный набор правил передачи информации по какому-либо интерфейсу.

Для сложных протоколов принята практика разделения их на несколько уровней (слоев). При этом каждый уровень реализуется отдельно и дополнительно стандартизуется обмен между уровнями. Это также позволяет заменять какие-то уровни (например, для адаптации к разным интерфейсам), оставляя неизменными другие.

Интерфейсы и протоколы, используемые в приборах и контроллерах

Интерфейс

Пропускная способность

Длина линии связи

Протоколы

мультиприборный (до 32 приборов)

стандартно 115200 bps,

есть реализации до 2 Mbps

не более 1200 м (без повторителя)

точка-точка

не более 3м

«токовая петля»

точка-точка

до 115200 bps

не более 1000 м

Ethernet 10/100 base T (по витой паре)

точка-точка

не более 100 м

точка-точка

не более 3 м

Mass Storage Device

точка-точка

Совместимость приборов - это их способность осуществлять ин формационный обмен между собой. Каждый из приборов, участвующих в информационном обмене, должен иметь определенный интерфейс и понимать определенный протокол. И даже в этом случае не гарантируется возможность обмена, т.к. один прибор может оказаться неспособным передавать ту информацию, которую требуется получать другому. Но что делать, если приборы способны к передаче нужной информации, но имеют разные интерфейсы и/или понимают разные протоколы? В этом случае требуется применение преобразователей интерфейсов или шлюзов.

Преобразователь интерфейсов - это устройство, имеющее два или более различных интерфейсов, ретранслирующее информацию из одного интерфейса в другой (другие). При этом передача информации осуществляется без ее преобразования. Поэтому к преобразователю интерфейсов имеет смысл подключать только те устройства, которые способны работать по одному протоколу.

Шлюз (или мост) - это интеллектуальное устройство, способное к преобразованию данных из одного протокола в другой. При этом шлюз может выступать также и в качестве преобразователя интерфейсов. Шлюз, в отличие от преобразователя интерфейса, требует дополнительной настройки, т.к. ему требуется указать, какие данные по каким протоколам надо принимать и передавать.

Интерфейс RS -485. При проектировании промышленных систем автоматизации наибольшее распространение получили информационные сети, основанные на интерфейсе стандарта EIA RS-485. Это высокоскоростной и помехоустойчивый последовательный интерфейс, который позволяет создавать сети путем параллельного подключения многих устройств к одной физической линии.

Большинство приборов, предназначенных для работы в информационной сети, имеют встроенный интерфейс RS-485.

В обычном персональном компьютере (не промышленного исполнения) этот интерфейс отсутствует, поэтому для подключения к ПК промышленной сети RS-485 необходим специальный адаптер - преобразователь интерфейса RS-485/RS-232 или RS-485/USB (например, ОВЕН АСЗ-М или АС4).

По интерфейсу RS-485 данные передаются с помощью «симметричного» (дифференциального) сигнала по двум линиям (А и В). Максимальная длина линии связи между крайними устройствами может составлять до 1200 м (и более с использованием повторителей). При длине линии связи более 100 м в максимально удаленных друг от друга точках сети рекомендуется устанавливать оконечные согласующие резисторы номиналом от 100 до 250 Ом, позволяющие компенсировать волновое сопротивление кабеля и минимизировать амплитуду отраженного сигнала. Количество приборов в сети не должно превышать 32 (без использования повторителя).

Интерфейс RS -232. Интерфейс стандарта EIA RS-232C предназначен для последовательной связи двух устройств (соединение «точка-точка»). Он является общепринятым и широко используется для подсоединения внешнего оборудования к ПК. Передача данных по интерфейсу RS-232C осуществляется с помощью «несимметричного» сигнала по двум линиям - TxD и RxD, а амплитуда сигнала измеряется относительно линии GND («нуля») (см. рис.).

Несимметричность сигнала обуславливает низкую помехозащищенность данного интерфейса, особенно при промышленных помехах, поэтому длина линии связи RS-232, как правило, ограничена расстоянием в несколько метров. Наличие линий приема (RxD) и передачи (TxD) данных позволяет поддерживать полнодуплексную передачу информации, т.е. одновременно информация может как передаваться, так и приниматься. Устройства для связи по интерфейсу RS-232 обычно соединяются кабелем с 9-контактными или 25-контактными разъемами (DB9, DB25 и др.).

Интерфейс «токовая петля» (разновидность RS-232). «Токовая петля» - разновидность интерфейса RS-232, также обеспечивающая связь двух приборов (соединение «точка-точка»). Информация в токовой петле передается не напряжением, а током по двухпроводной линии, что обеспечивает высокий уровень помехозащищенности. Стандарт «токовая петля» позволяет передавать данные на расстояния до 1000 м со скоростью до 19,2 кбит/с. Из-за наличия одной линии связи стандартом обеспечивается полудуплексная передача данных, т.е. в каждый момент времени информация может либо передаваться, либо приниматься.

Приборы могут иметь встроенный интерфейс «токовая петля», которые могут быть подключены:

1) к ПК через адаптер «токовая петля»/RS-232;

2) к сети RS-485 через шлюз «токовая петля»/RS-485.

Рис. Типовые схемы подключения приборов с интерфейсом

«токовая петля» к сети

Интерфейс Ethernet . Ethernet - транспортная технология для передачи данных в вычислительных сетях, преимущественно локальных. Протокол, используемый в кабельных сетях Ethernet - CSMA/CD (Carrier Sense Multiple Access with Collision Detection) - Множественный доступ с контролем несущей и обнаружением конфликтов. В соответствии с этим протоколом устройства начинают передачу данных только после обнаружения свободного канала связи для сокращения между ними количества коллизий (ошибок). Все версии семейства Ethernet ориентированы на поддержку работы до 1024 узлов сети. Этот интерфейс получил широкое распространение в компьютерных сетях благодаря высокой пропускной способности и помехоустойчивости. Чаще используется встроенный интерфейс Ethernet 10/100 Base-T, что позволяет встраивать приборы и ПЛК в распределенные информационные системы более высокого уровня.

Интерфейс USB . Стандарт USB разработан как альтернатива более «медленным» компьютерным стандартам RS-232 и LPT. В настоящее время устройства с интерфейсом USB 2.0 позволяют передавать данные со скоростью до 480 Мбит/с.

Интерфейс USB, как и RS-48S, является симметричным и позволяет передавать данные по двум проводам (D+ и D-), при этом логические уровни аналогичны соответствующим уровням стандарта RS-485. Интерфейс USB имеет линии питания Vcc и GND для запитывания подключенного устройства (при условии, что потребляемый им ток не превышает 500 мА). После установки драйвера операционная система распознает подключаемое устройство как СОМ-порт и использует стандартный асинхронный режим передачи данных, применяемый для работы с аппаратным СОМ-портом.

Интерфейс передачи данных

Интерфейс передачи данных

Интерфейс передачи данных - интерфейс, обеспечивающий передачу двоичных данных. В зависимости от способа передачи данных различают последовательный и параллельный интерфейсы

См. также: Интерфейсы передачи данных Интерфейсы

Финансовый словарь Финам .


Смотреть что такое "Интерфейс передачи данных" в других словарях:

    интерфейс передачи данных - — [Е.С.Алексеев, А.А.Мячев. Англо русский толковый словарь по системотехнике ЭВМ. Москва 1993] интерфейс передачи данных [Интент] Тематики информационные технологии в целом EN communication interfacedata transfer interfaceDTI …

    интерфейс передачи данных с номинальной скоростью - базовый интерфейс обмена базовый интерфейс абонента интерфейс базового уровня — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы базовый интерфейс… … Справочник технического переводчика

    интерфейс передачи данных с базовой скоростью в сети ЦСИС - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN ISDN primary rate interfaceISDN PRI … Справочник технического переводчика

    интерфейс передачи данных с номинальной скоростью в сети ЦСИС - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN ISDN basic rate interfaceISDN BRI … Справочник технического переводчика

    У этого термина существуют и другие значения, см. SSI. SSI (англ. Synchronous Serial Interface, синхронно последовательный интерфейс) популярный последовательный интерфейс передачи данных, предназначенный для индустриальных применений … Википедия

    открытый интерфейс передачи данных - открытый сетевой интерфейс — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы открытый сетевой интерфейс EN open data link interfaceODI … Справочник технического переводчика

    распределенный интерфейс передачи данных по волоконно-оптическим каналам (стандарт ANSI. США) - Сеть стандарта FDDI имеет двухкольцевую структуру и обеспечивает передачу данных со скоростью до 100 Мбит/с. Максимальная протяженность кольца 100 км. При использовании многомодового кабеля в сети может быть размещено до 500 станций на расстоянии … Справочник технического переводчика

    распределенный интерфейс передачи данных по волоконно-оптическим каналам - Стандарт для локальных сетей на основе волоконно оптических линий связи (МСЭ Т J.112, МСЭ Т J.122). Тематики электросвязь, основные понятия EN fiber distributed data interfaceFDDI … Справочник технического переводчика

    распределенный интерфейс передачи данных по проводным линиям - Модификация стандарта FDOI для кабельных систем на базе экранированных или неэкранированных витых пар. Данная технология значительно упрощает процесс инсталляции кабельной системы и удешевляет ее, однако накладывает ограничение на максимальное… … Справочник технического переводчика

    экранированная витая пара/интерфейс передачи данных по оптоволокну - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN twisted pair/fiber distributed data interfaceTP/FDDI … Справочник технического переводчика

Современная техника имеет огромное количество всевозможных входов и выходов для обмена данными с другими устройствами. В характеристиках к этой техники указываются названия всех поддерживаемых ею интерфейсов. Некоторые пользователи очень плохо разбираются во всех этих названиях и аббревиатурах, что не позволяет им грамотно оценить возможности того или иного устройства. Существуют как проводные, так и беспроводные интерфейсы, наиболее распространённые из них мы рассмотрим далее в этой статье.

Начнём с проводных интерфейсов, преимуществами которых являются надёжность и защищённость соединения, а также возможность передачи информации на высокой скорости. Одним из очень распространённых проводных интерфейсов является универсальная последовательная шина, или USB. Практически не одно современное устройство, работающее с информацией, не обходится без него. USB-порты есть во всех ноутбуках и системных блоках. В устройствах небольшого размера, таких как видеокамера или мобильный телефон могут использоваться уменьшенные версии этого стандарта. Стандарт USB появился в 1994 году. Первой была версия USB 0.7. Последней, самой современной версией является USB 3.0, скорость которой доходит до 4,8 Гбит/с.

Для мультимедийных данных используется формат HDMI. Его название переводится как мультимедийный интерфейс высокой чёткости. HDMI используется для передачи аудио и видео сигналов высокого качества со скоростью, достигающей 10,2 Гбит/с и защитой HDCP. Этот интерфейс используется в телевизорах, видеокартах и DVD плеерах. Обычно для него используется кабель длиною около 5-и метров, а при использовании усилителей длина может дойти до 35-и метров.

Ещё один высокоскоростной интерфейс - это FireWire. Его реальное название - IEEE 1394, а в устройствах производства фирмы Sony он называется i.LINK. Встречается практически на всех материнских платах. Скорость этого интерфейса 100-3200 Мбит/с.

Для компьютерных сетей используется стандарт Ethernet. В основном данный интерфейс применяется в локальных сетях. Его скорость зависит от используемого кабеля. Если в Ethernet используется коаксиальный кабель, то скорость составляет 10 Мбит/с. Передача данных, с использованием витой пары осуществляется со скоростью 100-1000 Мбит/с. А вот скорость с использованием оптоволокна может превышать 1000 Мбит/с. Существует два стандарта Ethernet: FastEthernet, скорость которого составляет 100 Мбит/с и более быстрый GigabitEthernet, который разгоняется до 1000 Мбит/с. Данный интерфейс присутствует практически на всех материнских платах, а также встречается на некоторых гаджетах и игровых консолях.

Теперь перейдём к беспроводным интерфейсам, очевидным преимуществом которых является отсутствие проводов. Начнём с инфракрасного порта, или IrDA. Он является самым старым из всех беспроводных интерфейсов. Скорость передачи данных этого интерфейса составляет 2,4 Кбит/с-16 Мбит/с. Наиболее часто используется в мобильных телефонах и пультах дистанционного управления. При двухсторонней связи действует на расстоянии до 50 см, а при односторонней связи до 10 м.

Огромную популярность в последнее время обрёл Bluetooth, который очень широко используется в мобильных телефонах. Этот интерфейс был так назван в честь Харальда Синезубого - короля Дании. Радиус его действия составляет примерно 100 метров, но наличие стен и прочих препятствий может его существенно сократить. Обмен информации осуществляется на скорости в пределах 3 Мбит/с, а в новой версии данного стандарта Bluetooth 3.0 скорость может доходить до 24 Мбит/с.

Беспроводным аналогом стандарта Ethernet является Wi-Fi, название которого в переводе означает беспроводная точность. Этот интерфейс обеспечивает соединение на скорости 54-480 Мбит/с, с радиусом действия 450 метров при отсутствии препятствий.

Усовершенствованной версией Wi-Fi является WiMAX, радиус действия, которого может доходить и до 10 км, а информация передаётся со скоростью от 30 Мбит/с до 1 Гбит/с.



Рекомендуем почитать

Наверх