Стабилизированный блок питания для ламповой техники. Простой регулируемый стабилизированный блок питания Что значит стабилизированный выходу источника питания

Мужские прически 12.04.2023
Мужские прически

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.
Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.

Сборка регулируемого стабилизированного блока питания

Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.






Проверка блока питания

Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Вашему вниманию предлагается проверенная конструкция универсального блока питания. Данный простой источник питания, выполнен на мощных составных транзисторах. Основное преимущество схемы в том, что БП пригоден не только для питания различных электронных схем, но и для зарядки различных, в том числе и мощных свинцовых аккумуляторов.

Схема стабилизированного блока питания:


Напряжение на выходе БП, с данными значениями деталей, регулируется от нуля до 15В. Если поставить трансформатор и стабилитрон на большее напряжение, то и макимальный вольтаж выхода тоже возрастёт. Диоды любые выпрямительные, на соответствующий нагрузке ток с двукратным запасом. Конденсатор С1 на напряжение не менее 25В. Старайтесь не использовать советские алюминиевые электролиты - они часто выходят из строя. Транзисторы заменимы на аналогичные по мощности и структуре.


Обратите внимание, что катоды диодов и коллекторы обеих транзисторов соединены между собой - значит их можно разместить на одном большом радиаторе без всяких изолирующих прокладок. Если поставить конденсаторы, показанные на схеме пунктиром, можно использовать устройство в качестве блока питания. В этом случае после диодов тоже не помешает конденсатор 1000-2000мкФ 25В. А если требуется только режим зарядного устройства (как это сделано в авторском варианте на фотографии), то можно их исключить.

Готовый стабилизированный источник питания размещается в любом подходящем корпусе. Наружу для удобства контроля выводится зелёный светодиод - сеть 220В, и красный - выход. Причём чем больше напряжение на выходе - тем ярче он будет светиться. Естественно подключают светодиод не напрямую между плюсом и минусом, а через резистор 1-2кОм.

Этот блок питания на микросхеме LM317, не требует каких – то особых знаний для сборки, и после правильного монтажа из исправных деталей, не нуждается в наладке. Несмотря на свою кажущуюся простоту, этот блок является надёжным источником питания цифровых устройств и имеет встроенную защиту от перегрева и перегрузки по току. Микросхема внутри себя имеет свыше двадцати транзисторов и является высокотехнологичным устройством, хотя снаружи выглядит как обычный транзистор.

Питание схемы рассчитано на напряжение до 40 вольт переменного тока, а на выходе можно получить от 1.2 до 30 вольт постоянного, стабилизированного напряжения. Регулировка от минимума до максимума потенциометром происходит очень плавно, без скачков и провалов. Ток на выходе до 1.5 ампер. Если потребляемый ток не планируется выше 250 миллиампер, то радиатор не нужен. При потреблении большей нагрузки, микросхему поместить на теплопроводную пасту к радиатору общей площадью рассеивания 350 – 400 или больше, миллиметров квадратных. Подбор трансформатора питания нужно рассчитывать исходя из того, что напряжение на входе в блок питания должно быть на 10 – 15 % больше, чем планируете получать на выходе. Мощность питающего трансформатора лучше взять с хорошим запасом, во избежание излишнего перегрева и на вход его обязательно поставить плавкий предохранитель, подобранный по мощности, для защиты от возможных неприятностей.
Нам, для изготовления этого нужного устройства, потребуются детали:

  • Микросхема LM317 или LM317T.
  • Выпрямительная сборка почти любая или отдельные четыре диода на ток не менее 1 ампер каждый.
  • Конденсатор C1 от 1000 МкФ и выше напряжением 50 вольт, он служит для сглаживания бросков напряжения питающей сети и, чем больше его ёмкость, тем более стабильным будет напряжение на выходе.
  • C2 и C4 – 0.047 МкФ. На крышке конденсатора цифра 104.
  • C3 – 1МкФ и больше напряжением 50 вольт. Этот конденсатор, так же можно применить большей ёмкости для повышения стабильности выходящего напряжения.
  • D5 и D6 – диоды, например 1N4007, или любые другие на ток 1 ампер или больше.
  • R1 – потенциометр на 10 Ком. Любого типа, но обязательно хороший, иначе выходное напряжение будет «прыгать».
  • R2 – 220 Ом, мощностью 0.25 – 0.5 ватт.

Перед подключением к схеме питающего напряжения, обязательно проверьте правильность монтажа и пайки элементов схемы.
Сборка регулируемого стабилизированного блока питания
Сборку я произвел на обычной макетной платы без всякого травления. Мне этот способ нравится из-за своей простоты. Благодаря ему схему можно собрать за считанные минуты.












Проверка блока питания
Вращением переменного резистора можно установить желаемое напряжение на выходе, что очень удобно.

Видео испытаний блока питания прилагается

Вам может понравиться:

  • Вязаные коврики крючком: интересные модели, схемы и…
  • Автономная gsm сигнализация из мобильного телефона…

Блок питания нужен всем. Музыканту-металлисту надо чем-то питать свои «примочки» к электрогитаре, радиолюбителю — приемники или всякие поделки на светодиодах-транзисторах, простому люду — антенные усилители к телевизору и так далее. Но купить готовое устройство не всегда получается — хотя бы даже из-за цены. Тем более нет на это желания, когда точно знаешь, что без дела валяется исправный понижающий трансформатор. Вот его-то мы и приспособим давать чистые девять вольт.

С дополнениями и изменениями от 09.11.15

Блок питания собран уже бессчетное количество раз. При правильном монтаже и исправных компонентах запускается всегда. Допускаются отклонения в номиналах элементов.

«Сердцем» блока питания (далее — БП) является понижающий трансформатор , без него нет смысла городить огород. Называется он так оттого, что понижает переменное розеточное напряжение 220 вольт в переменное же другого напряжения. Например, до 36, или 12, или даже 5. Но для наших целей необходим трансформатор, у которого на вторичной, выходной обмотке (не сетевой, та — входная и первичная) будет 12-15 вольт «переменки». Можно и немного больше, до 20, но нецелесообразно. Хорошо подходят трансформаторы из отслуживших свое магнитофонов, радиоприемников, других блоков питания, в особенности, если ранее устройство как раз и жило под напряжением девять вольт. В иллюстрациях к этой статье, например, я использовал полусгоревший трансформатор от роутерного БП. От скачка напряжения в нем сработал термопредохранитель, и напряжение на выходе исчезло (в современные трансформаторы встраивают такие одноразовые предохранители, которые разрывают цепь в случае перегрева. А перегрев может наступить либо тогда, когда через предохранитель «первички» течет большой ток (надолго повысилось напряжение в сети или трансформатору дали неподъемную нагрузку), либо когда перегревается сам трансформатор (его перегрузили или в корпусе БП очень-очень жарко). Предохранитель скрыт в начале первичной обмотки, и можно было его заменить аналогичным, но я просто бросил перемычку в обход. А для безопасности можно добавить обычную плавкую вставку 0,2 — 0,5 А).

Еще одна важная характеристика трансформатора — выдаваемый им ток. Тут уже надо примерно знать, сколько будет потреблять устройство, которому мы делаем БП. Для небольших светодиодных поделок хватит и 100 мА (а это пять светодиодов, подсоединенных параллельно друг к другу, причем установлены максимальные для них 20 мА), радиоприемники тоже много не едят (до 250 мА), простейшая гитарная «примочка»-дисторшн, питаемая от «Кроны», нуждается в 10-20 мА. Уже по внешнему виду трансформатора можно примерно судить, на какой ток он рассчитан. Главное — не перегружать его, а если нужно питать что-то прожорливое (ток более 1 А), то и блок питания должен быть соответствующий. Симптомы перегрузки, когда трансформатор, что называется, «не вывозит» — падает напряжение, греется магнитопровод и обмотки, появляется гудение, и, наконец, дым. А электроника вся на дыме работает. И как только он из нее выходит — она и перестает…

Далее нужен выпрямитель . Его задача — преобразование переменного тока в постоянный. Все описанные ранее устройства питаются постоянным током. Я использую готовый диодный мост, но можно заменить его четырьмя одинаковыми диодами с адекватным запасом тока (1N4004 хватит с головой). Подключив диодный мост ко «вторичке» трансформатора, можно увидеть, что ее 12 переменных вольт превращаются в 11 или даже 10,8 постоянных . Так и должно быть. Это диоды открываются при напряжении 0,6 вольта, а в диодном мосту одновременно работают два диода из четырех. Вот и пропадает по 1,2 вольта на каждом полупериоде колебаний.

И теперь, собственно, та часть, из-за которой блок носит гордое название «стабилизированный», то есть имеющий постоянное напряжение на своем выходе вне зависимости от того, что у него на входе (в разумных пределах, конечно). С табилизатор . Я использую трехногую микросхему 7809, где 78 указывает на стабилизацию положительной полярности напряжения, а 09 — число стабилизированных вольт (нетрудно догадаться, что если нужно питать какое-то пятивольтовое устройство, то в магазине надо спрашивать 7805, а трансформатор можно взять с чуть меньшим напряжением на «вторичке»). Три ноги у нее не случайно — на одну приходит нестабилизированное входное напряжение, другая присоединяется к общей шине («минусу»), а с третьей снимается стабилизированное постоянное напряжение. Для нормальной работы микросхем этой серии необходимо, чтобы входное напряжение было хотя бы на 2 вольта выше выходного. То есть 9+2=11 В. Столько же и остается после диодного моста, мы отлично сюда попадаем.


Глядя на график выпрямленного диодным мостом напряжения, язык не повернется назвать его постоянным. Оно пульсирует. Для сглаживания этих «горбов» нужны конденсаторы. В принципе, вполне хватит двух электролитических, но по правилам хорошего тона, чтобы продлить им жизнь, хорошо бы еще вставить и два керамических на 100-200 нФ. Электролитические я использую на 470-1000 мкФ, 25 вольт по входу и 16 вольт по выходу. Почему так, в чем разница? Отвечаю. Если к диодному мосту поцепить электролитический конденсатор, то на его ножках образуется напряжение, в 1,41 раза большее, чем на мосту. 11*1,41=15,51 В. Ставить конденсатор на максимальных 16 вольт, честно говоря, с таким «запасом» немного неправильно. Если на «первичку» попадет не 220, а 240 вольт, то и на «вторичке» уже будет явно не 11. И репу шестнадцативольтового конденсатора может разорвать. Закидав его ошметками все, что рядом. По этой же причине пробный пуск любого устройства, содержащего электролитические конденсаторы, надо осуществлять так, чтобы они не были направлены в сторону рук, лиц и глаз. Желательно даже накрыть чем-то «шайтан-машину» и нацепить защитные очки. А вот по девятивольтовому выходу конденсатор на 16 вольт — самое оно. Можно, конечно, и стовольтовый поставить, но он: а) дороже, б) больше размерами. Ничто не мешает и не 470 мкФ поставить, а больше. 1000 мкФ, 4700 мкФ, 10000 мкФ, наконец. Чем больше — тем менее будет подвержена влиянию перепадов напряжения цепь. Часто можно наблюдать, что, выдернув из розетки шнур радиоприемника, он еще поет несколько секунд, затихая. Но со временем при таких же махинациях приемник поет все короче и короче. Это конденсаторы стареют, теряют емкость. Можно, конечно, заставить всю комнату спараллеленными конденсаторами на 10000 мкФ, и тогда приемник, пожалуй, сможет автономно проработать целый день после их зарядки, но чем больше емкость конденсатора, тем он: а) дороже, б) больше размерами. Где-то это уже читали? Такая вот корреляция (связь между несколькими величинами).

Теперь — что касается «продления жизни». Как в выпрямленном, так и стабилизированном напряжении могут существовать высокочастотные переменные составляющие. Так, при стандартной частоте пульсаций сети 50 Гц после диодного моста уже будет 100 Гц, а как-то пробравшиеся ВЧ-шки — это килогерцы частоты. Грозовые разряды, искры от щеточно-коллекторного узла электродвигателей, «шумные» блоки питания… Электролитические конденсаторы очень не любят высокочастотные колебания и быстрее деградируют, если подвержены такому влиянию. Их удел — сглаживание медленных пульсаций. Поэтому параллельно каждому электролитическому конденсатору припаивается керамический, который как раз и рассчитан на работу с высокими частотами. Получается очень эффективный тандем.

Еще понадобятся соединительные провода и плата, на которую это все будет монтироваться. Использовать провода из «витой пары» не рекомендую — «дедушкиным» паяльником (с медным жалом, оловом и канифолью) они плохо паяются, да и вообще — очень ломкие. Что касается платы — в любом уважающем себя радиомагазине есть такая штука, как «макетная плата». Это текстолитовое или гетинаксовое основание с контактными площадками, расположенными в строгом порядке. Расставляй элементы, как хочешь, соединяй проводками, перемычками, или просто запаивай неиспользуемые площадки. Профи могут вытравить плату (я думаю, что для такого стабилизатора есть немало вариантов «печаток»), но профи и без моих советов, небось, уже давным-давно собрали такой БП, и не один.
Ладно, слов тысяча, а дел пока нет. Просто хотелось дать чуть-чуть теории.

Приступаем?


Типовая схема БП на 7809. Слева направо, сверху вниз: обычный проволочный предохранитель (нет у меня, равно как и теплового, хотя по-хорошему — надо), сетевой трансформатор, диодный мост, «электролит», «керамика», стабилизатор, «электролит», «керамика». Вариантов этой типовой схемы много, и как ни собери — почти всегда правильно. Кстати, отечественный аналог 7809 — микросхема КР142ЕН8А, в просторечии именуемая просто «кренкой». Нормально работает при напряжениях на входе +11,5…35 В. У нас есть 15,5 В. Выходной ток 7809 — 1-1,5 А (в зависимости от корпуса), лишь бы трансформатор «тащил». Да, если в планах питание устройств с большим током потребления, то надо позаботиться о радиаторе для стабилизатора (приемники с их максимальными 250 мА микросхему не нагревают, можно обойтись без него).


Необходимое оборудование. Пинцет-самозахват (не понадобился), отсос припоя (если случайно соединил не те дорожки или еще как накосорезил), проволочный припой, изолента отвратительного качества (лучше не экономить), бокорезы, утконосы (не пригодились), паяльник с «вечным» жалом и железная мочалка для его очистки (обычная кухонная, для сковородок).


Необходимые ресурсы. Плата, трансформатор (сетевой кабель не показан, хотя он нужен — не забудьте!), светодиод с резистором (мимопроходили), диодный мост, 7809, два конденсатора, керамический конденсатор; мультиметр с еще одной «керамикой» показывает ее емкость — 125 нФ. Нам подходит. Написано на корпусе, что 150, но кто-то из них явно врет.




К трансформатору подпаиваем сетевой шнур. С «первичкой» надо быть очень осторожным, там — опасное для жизни напряжение . Как только припаяли — замотать это место изолентой от греха подальше.

Кстати, если случилось так, что вы, крутя трансформатор в руках, запутались уже, где какая обмотка, то поможет мультиметр. У понижающего трансформатора «вторичка» имеет очень малое сопротивление, буквально доли ома, а на «первичке» он обычно показывает 300-600 Ом.


Со «вторички» идут 12 вольт «переменки».



Понемногу собираем плату.
Универсального расположения деталей нет, пусть каждый делает так, как ему удобно. Я стараюсь экономить место, ведь платы не очень дешевы. Да и вообще, «керамику» лучше ставить как можно ближе к стабилизатору — так надо для его корректной работы.


У меня, например, три экземпляра такого БП, и все собраны с разным расположением деталей. И ничего, работают.


Обратная сторона.



Можно, конечно, и иначе, расставляя элементы так, как на схеме: диодный мост, «электролит», «керамика», стабилизатор, «электролит», «керамика».
В этот раз у меня вышло так.


По низу идет выходная шина, в середине — общий провод-«минус», иногда для краткости именуемый «землей».



Уже на этом этапе блок полностью готов.
Но мне захотелось покуражиться. Не зря же, пока я разбирал завалы, мне в руки попал светодиод. Вот и пусть светит, развлекает коллектив блока питания.


Светодиод — прибор токовый. Это значит, что он светит, когда через него идет ток. Причем ток этот надо ограничивать (обычно — 20 мА), потому что в противном случае диод попытается сожрать все, что ему дает БП, и, естественно, сгорит. Как тот медведь, что по лесу шел. У нас даже есть такая шутка радиолюбительская. «Шел светодиод по плате, видит — шина девятивольтовая. Сел на нее и сгорел». А для ограничения тока служит резистор. Вы не поверите, но он так и называется — токоограничивающий. Для девяти вольт питания он может составлять 500 Ом, но я поставил 5,6 кОм — уж больно ярко светил.


То же самое.



Финальные замеры.
На конденсаторе перед стабилизатором — расчетных 15 с лишком вольт.


А на выходе — 9,2 вольта. Страшного ничего нет: все 7809, что мне попадались, чуть завышают планку. Даже свежая «Крона», эталон девятивольтовости, будет выдавать больше девяти вольт.


Обрезанные ножки выводных элементов рекомендую сохранить для будущих проектов — на перемычки какие-нибудь.



А вот я вырезал из общей макетной платы все, что надо.
Вырезать можно разными способами, я за неимением подходящего инструмента пользуюсь канцелярским ножом. Но он очень не любит резать платы и быстро тупится.

Вот и все. Не сложно?


А радиоприемник мой очень доволен таким блоком. Сейчас с БП сложилась нелегкая ситуация. Старая радиоаппаратура очень не любит современные импульсные блоки питания. Да, они легкие и компактные, но сильно шумят во всех диапазонах, порой даже станций не слышно, один только писк, визг, треск. А трансформаторные могут только слегка гудеть. Даже включенный компьютер или ноутбук рядом с радиоприемником очень сильно «фонит».

А про свой радиоприемник, надеюсь, я расскажу в следующей статье. Мы будем его ремонтировать, проводить ему профилактику и немного модернизировать, а так же узнаем, что интересного можно послушать в диапазонах, которых больше нет в современных аппаратах.

Дополнение от 25.02.16

Например, к вам в руки попал блок питания от роутера с «переменкой» 9-12 вольт на выходе. Если размеры позволяют, то почему бы не встроить стабилизатор внутрь?



Корпус надо аккуратно расколоть по шву с помощью ножа и ощутимого постукивания по ножу. Электронику можно всю сделать на плате, но я не стал заморачиваться и спаял «навесом», кое-где прихватив термоклеем. Светодиод — по желанию. Обратно половинки склеиваются суперклеем.

Иногда приходится заменять штекер. Наиболее распространены 5,5/2,1 мм (наружный/внутренний диаметр) и 5,5/2,5 мм.



По возможности лучше брать те, что справа, с желтым изолятором. Они сделаны не так халтурно.

Дополнение от 05.06.16

Бывают случаи, когда нужно нестандартное напряжение — например, 8,7 вольт.


Применив L7808 и кремниевый диод (Uпр = 0,7 В), на выходе можно получить искомые 8,7 вольт. Включая несколько диодов последовательно, можно еще больше поднять напряжение: для двух кремниевых это будет уже почти плюс 1,4 вольта к тому, на что запрограммирован сам стабилизатор. Диод (или диоды) надо выбирать соразмерно потребляемому нагрузкой току — для мелочи пойдет и КД522 (до 100 мА), а для чего покрупнее — хотя бы и 1N4001 (1 А).

Кремниевый диод добавляет 0,6-0,7 вольт, германиевый - 0,3-0,4 В. Можно с успехом их компоновать, максимальный ток такого самодельного стабилизатора определяется максимальным током самого хилого элемента.

Как-то недавно мне в интернете попалась одна схема очень простого блока питания с возможностью регулировки напряжения. Регулировать напряжение можно было от 1 Вольта и до 36 Вольт, в зависимости от выходного напряжения на вторичной обмотке трансформатора.

Внимательно посмотрите на LM317T в самой схеме! Третья нога (3) микросхемы цепляется с конденсатором С1, то есть третяя нога является ВХОДОМ, а вторая нога (2) цепляется с конденсатором С2 и резистором на 200 Ом и является ВЫХОДОМ.

С помощью трансформатора из сетевого напряжения 220 Вольт мы получаем 25 Вольт, не более. Меньше можно, больше нет. Потом все это дело выпрямляем диодным мостом и сглаживаем пульсации с помощью конденсатора С1. Все это подробно описано в статье как получить из переменного напряжения постоянное . И вот наш самый главный козырь в блоке питания – это высокостабильный регулятор напряжения микросхема LM317T. На момент написания статьи цена этой микросхемы была в районе 14 руб. Даже дешевле, чем буханка белого хлеба.

Описание микросхемы

LM317T является регулятором напряжения. Если трансформатор будет выдавать до 27-28 Вольт на вторичной обмотке, то мы спокойно можем регулировать напряжение от 1,2 и до 37 Вольт, но я бы не стал подымать планку более 25 вольт на выходе трансформатора.

Микросхема может быть исполнена в корпусе ТО-220:

или в корпусе D2 Pack

Она может пропускать через себя максимальную силу тока в 1,5 Ампер, что вполне достаточно для питания ваших электронных безделушек без просадки напряжения. То есть мы можем выдать напряжение в 36 Вольт при силе тока в нагрузку до 1,5 Ампера, и при этом наша микросхема все равно будет выдавать также 36 Вольт – это, конечно же, в идеале. В действительности просядут доли вольта, что не очень то и критично. При большом токе в нагрузке целесообразней поставить эту микросхему на радиатор.

Для того, чтобы собрать схему, нам также понадобится переменный резистор на 6,8 Килоом, можно даже и на 10 Килоом, а также постоянный резистор на 200 Ом, желательно от 1 Ватта. Ну и на выходе ставим конденсатор в 100 мкФ. Абсолютно простая схемка!

Сборка в железе

Раньше у меня был очень плохой блок питания еще на транзисторах. Я подумал, почему бы его не переделать? Вот и результат;-)


Здесь мы видим импортный диодный мост GBU606. Он рассчитан на ток до 6 Ампер, что с лихвой хватает нашему блоку питания, так как он будет выдавать максимум 1,5 Ампера в нагрузку. LM-ку я поставил на радиатор с помощью пасты КПТ-8 для улучшения теплообмена. Ну а все остальное, думаю, вам знакомо.


А вот и допотопный трансформатор, который выдает мне напряжение 12 Вольт на вторичной обмотке.


Все это аккуратно упаковываем в корпус и выводим провода.


Ну как вам? ;-)


Минимальное напряжение у меня получилось 1,25 Вольт, а максимальное – 15 Вольт.



Ставлю любое напряжение, в данном случае самые распространенные 12 Вольт и 5 Вольт



Все работает на ура!

Очень удобен этот блок питания для регулировки оборотов мини-дрели , которая используется для сверления плат.


Аналоги на Алиэкспресс

Кстати, на Али можно найти сразу готовый набор этого блока без трансформатора.


Лень собирать? Можно взять готовый 5 Амперный меньше чем за 2$:


Посмотреть можно по этой ссылке.

Если 5 Ампер мало, то можете посмотреть 8 Амперный. Его вполне хватит даже самому прожженному электронщику:




Рекомендуем почитать

Наверх