Показательные неравенства с модулем в степени. Решение показательных неравенств: основные способы. Определение и свойства показательной функции

Для девочек 22.10.2023
Для девочек

Показательными уравнениями и неравенствами считают такие уравнения и неравенства, в которых неизвестное содержится в показателе степени.

Решение показательных уравнений часто сводится к решению уравнения а х = а b , где а > 0, а ≠ 1, х – неизвестное. Это уравнение имеет единственный корень х = b, так как справедлива следующая теорема:

Теорема. Если а > 0, а ≠ 1 и а х 1 = а х 2 , то х 1 = х 2 .

Обоснуем рассмотренное утверждение.

Предположим, что равенство х 1 = х 2 не выполняется, т.е. х 1 < х 2 или х 1 = х 2 . Пусть, например, х 1 < х 2 . Тогда если а > 1, то показательная функция у = а х возрастает и поэтому должно выполняться неравенство а х 1 < а х 2 ; если 0 < а < 1, то функция убывает и должно выполняться неравенство а х 1 > а х 2 . В обоих случаях мы получили противоречие условию а х 1 = а х 2 .

Рассмотрим несколько задач.

Решить уравнение 4 ∙ 2 х = 1.

Решение.

Запишем уравнение в виде 2 2 ∙ 2 х = 2 0 – 2 х+2 = 2 0 , откуда получаем х + 2 = 0, т.е. х = -2.

Ответ. х = -2.

Решить уравнение 2 3х ∙ 3 х = 576.

Решение.

Так как 2 3х = (2 3) х = 8 х, 576 = 24 2 , то уравнение можно записать в виде 8 х ∙ 3 х = 24 2 или в виде 24 х = 24 2 .

Отсюда получаем х = 2.

Ответ. х = 2.

Решить уравнение 3 х+1 – 2∙3 х - 2 = 25.

Решение.

Вынося в левой части за скобки общий множитель 3 х - 2 , получаем 3 х - 2 ∙ (3 3 – 2) = 25 – 3 х - 2 ∙ 25 = 25,

откуда 3 х - 2 = 1, т.е. х – 2 = 0, х = 2.

Ответ. х = 2.

Решить уравнение 3 х = 7 х.

Решение.

Так как 7 х ≠ 0, то уравнение можно записать в виде 3 х /7 х = 1, откуда (3/7) х = 1, х = 0.

Ответ. х = 0.

Решить уравнение 9 х – 4 ∙ 3 х – 45 = 0.

Решение.

Заменой 3 х = а данное уравнение сводится к квадратному уравнению а 2 – 4а – 45 = 0.

Решая это уравнение, находим его корни: а 1 = 9, а 2 = -5, откуда 3 х = 9, 3 х = -5.

Уравнение 3 х = 9 имеет корень 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.

Ответ. х = 2.

Решение показательных неравенств часто сводится к решению неравенств а х > а b или а х < а b . Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Рассмотрим некоторые задачи.

Решить неравенство 3 х < 81.

Решение.

Запишем неравенство в виде 3 х < 3 4 . Так как 3 > 1, то функция у = 3 х является возрастающей.

Следовательно, при х < 4 выполняется неравенство 3 х < 3 4 , а при х ≥ 4 выполняется неравенство 3 х ≥ 3 4 .

Таким образом, при х < 4 неравенство 3 х < 3 4 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3 х < 81 выполняется тогда и только тогда, когда х < 4.

Ответ. х < 4.

Решить неравенство 16 х +4 х – 2 > 0.

Решение.

Обозначим 4 х = t, тогда получим квадратное неравенство t2 + t – 2 > 0.

Это неравенство выполняется при t < -2 и при t > 1.

Так как t = 4 х, то получим два неравенства 4 х < -2, 4 х > 1.

Первое неравенство не имеет решений, так как 4 х > 0 при всех х € R.

Второе неравенство запишем в виде 4 х > 4 0 , откуда х > 0.

Ответ. х > 0.

Графически решить уравнение (1/3) х = х – 2/3.

Решение.

1) Построим графики функций у = (1/3) х и у = х – 2/3.

2) Опираясь на наш рисунок, можно сделать вывод, что графики рассмотренных функций пересекаются в точке с абсциссой х ≈ 1. Проверка доказывает, что

х = 1 – корень данного уравнения:

(1/3) 1 = 1/3 и 1 – 2/3 = 1/3.

Иными словами, мы нашли один из корней уравнения.

3) Найдем другие корни или докажем, что таковых нет. Функция (1/3) х убывающая, а функция у = х – 2/3 возрастающая. Следовательно, при х > 1 значения первой функции меньше 1/3, а второй – больше 1/3; при х < 1, наоборот, значения первой функции больше 1/3, а второй – меньше 1/3. Геометрически это означает, что графики этих функций при х > 1 и х < 1 «расходятся» и потому не могут иметь точек пересечения при х ≠ 1.

Ответ. х = 1.

Заметим, что из решения этой задачи, в частности, следует, что неравенство (1/3) х > х – 2/3 выполняется при х < 1, а неравенство (1/3) х < х – 2/3 – при х > 1.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

На данном уроке мы рассмотрим различные показательные неравенства и научимся их решать, основываясь на методике решения простейших показательных неравенств

1. Определение и свойства показательной функции

Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.

Показательная функция - это функция вида , где основание степени и Здесь х - независимая переменная, аргумент; у - зависимая переменная, функция.

Рис. 1. График показательной функции

На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.

Обе кривые проходят через точку (0;1)

Свойства показательной функции :

Область определения: ;

Область значений: ;

Функция монотонна, при возрастает, при убывает.

Монотонная функция принимает каждое свое значение при единственном значении аргумента.

При , когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности, т. е. при данных значениях аргумента мы имеем монотонно возрастающую функцию (). При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно, т. е. при данных значениях аргумента мы имеем монотонно убывающую функцию ().

2. Простейшие показательные неравенства, методика решения, пример

На основании вышесказанного приведем методику решения простейших показательных неравенств:

Методика решения неравенств:

Уравнять основания степеней;

Сравнить показатели, сохранив или изменив на противоположный знак неравенства.

Решение сложных показательных неравенств заключается, как правило, в их сведении к простейшим показательным неравенствам.

Основание степени больше единицы, значит, знак неравенства сохраняется:

Преобразуем правую часть согласно свойствам степени:

Основание степени меньше единицы, знак неравенства необходимо поменять на противоположный:

Для решения квадратного неравенства решим соответствующее квадратное уравнение:

По теореме Виета находим корни:

Ветви параболы направлены вверх.

Таким образом, имеем решение неравенства:

Несложно догадаться, что правую часть можно представить как степень с нулевым показателем:

Основание степени больше единицы, знак неравенства не меняется, получаем:

Напомним методику решения таких неравенств.

Рассматриваем дробно-рациональную функцию:

Находим область определения:

Находим корни функции:

Функция имеет единственный корень,

Выделяем интервалы знакопостоянства и определяем знаки функции на каждом интервале:

Рис. 2. Интервалы знакопостоянства

Таким образом, получили ответ.

Ответ:

3. Решение типовых показательных неравенств

Рассмотрим неравенства с одинаковыми показателями, но различными основаниями.

Одно из свойств показательной функции - она при любых значениях аргумента принимает строго положительные значения, значит, на показательную функцию можно разделить. Выполним деление заданного неравенства на правую его часть:

Основание степени больше единицы, знак неравенства сохраняется.

Проиллюстрируем решение:

На рисунке 6.3 изображены графики функций и . Очевидно, что когда аргумент больше нуля, график функции расположен выше, эта функция больше. Когда же значения аргумента отрицательны, функция проходит ниже, она меньше. При значении аргумента функции равны, значит, данная точка также является решением заданного неравенства.

Рис. 3. Иллюстрация к примеру 4

Преобразуем заданное неравенство согласно свойствам степени:

Приведем подобные члены:

Разделим обе части на :

Теперь продолжаем решать аналогично примеру 4, разделим обе части на :

Основание степени больше единицы, знак неравенства сохраняется:

4. Графическое решение показательных неравенств

Пример 6 - решить неравенство графически:

Рассмотрим функции, стоящие в левой и правой части и построим график каждой из них.

Функция - экспонента, возрастает на всей своей области определения, т. е. при всех действительных значениях аргумента.

Функция - линейная, убывает на всей своей области определения, т. е. при всех действительных значениях аргумента.

Если данные функции пересекаются, то есть система имеет решение, то такое решение единственное и его легко можно угадать. Для этого перебираем целые числа ()

Несложно заметить, что корнем данной системы является :

Таким образом, графики функций пересекаются в точке с аргументом, равным единице.

Теперь нужно получить ответ. Смысл заданного неравенства в том, что экспонента должна быть больше или равна линейной функции, то есть быть выше или совпадать с ней. Очевиден ответ: (рисунок 6.4)

Рис. 4. Иллюстрация к примеру 6

Итак, мы рассмотрели решение различных типовых показательных неравенств. Далее перейдем к рассмотрению более сложных показательных неравенств.

Список литературы

Мордкович А. Г. Алгебра и начала математического анализа. - М.: Мнемозина. Муравин Г. К., Муравина О. В. Алгебра и начала математического анализа. - М.: Дрофа. Колмогоров А. Н., Абрамов А. М., Дудницын Ю. П. и др. Алгебра и начала математического анализа. - М.: Просвещение.

Math. md . Mathematics-repetition. com . Diffur. kemsu. ru .

Домашнее задание

1. Алгебра и начала анализа, 10-11 класс (А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын) 1990, № 472, 473;

2. Решить неравенство:

3. Решить неравенство.

Здравствуйте! Дорогие мои ученики, в этой статье мы научимся с вами решать показательные неравенства.

Каким бы сложным не показалось вам показательное неравенство, после некоторых преобразований (о них мы поговорим чуть позже) все неравенства сводятся к решению простейших показательных неравенств :

а х > b , a x < b и a x ≥ b , a x ≤ b .

Давайте попробуем разобраться как же решаются такие неравенства.

Мы рассмотрим решение строгих неравенств . Отличие при решении нестрогих неравенств заключается только в том, что полученные соответствующие корни включаются в ответ.

Пусть надо решить неравенство вида а f (x) > b , где a>1 и b>0 .

Посмотрите на схему решения таких неравенств (рисунок 1):

Сейчас рассмотрим конкретный пример. Решить неравенство: 5 х – 1 > 125 .

Так как 5 > 1 и 125 > 0, то
х – 1 > log 5 125, то есть
х – 1 > 3,
х > 4.

Ответ: (4; +∞) .

А каким же будет решение этого же неравенства а f (x) >b , если 0 и b>0 ?

Итак, схема на рисунке 2

Пример: Решить неравенство (1/2) 2x - 2 4

Применяя правило (рисунок 2), получаем
2х – 2 ≤ log 1/2 4,
2х – 2 ≤ –2,
2х ≤ 0,
х ≤ 0.

Ответ: (–∞; 0] .

Снова рассмотрим это же неравенство а f (x) > b , если a>0 и b<0 .

Итак, схема на рисунке 3:


Пример решения неравенства (1/3) х + 2 > –9 . Как мы замечаем, какое бы число мы не подставили вместо х, (1/3) х + 2 всегда больше нуля.

Ответ: (–∞; +∞) .

А как же решаются неравенства вида а f (x) < b , где a>1 и b>0 ?

Схема на рисунке 4:

И следующий пример: 3 3 – х ≥ 8 .
Поскольку 3 > 1 и 8 > 0, то
3 – х > log 3 8, то есть
–х > log 3 8 – 3,
х < 3 – log 3 8.

Ответ: (0; 3–log 3 8) .

Как же измениться решение неравенства а f (x) < b , при 0 и b>0 ?

Схема на рисунке 5:

И следующий пример: Решить неравенство 0,6 2х – 3 < 0,36 .

Cледуя схеме на рисунке 5, получаем
2х – 3 > log 0,6 0,36 ,
2х – 3 > 2,
2х > 5,
х > 2,5

Ответ: (2,5; +∞) .

Рассмотрим последнюю схему решения неравенства вида а f (x) < b , при a>0 и b<0 , представленную на рисунке 6:

Например, решим неравенство:

Замечаем, что какое бы число мы не подставили вместо х, левая часть неравенства всегда больше нуля, а у нас это выражение меньше -8, т.е. и нуля, значит решений нет.

Ответ: решений нет .

Зная как решаются простейшие показательные неравенства, можно приступить и к решению показательных неравенств .

Пример 1.

Найти наибольшее целое значение х, удовлетворяющее неравеству

Так как 6 х больше нуля (ни при каком х знаменатель в ноль не обращается), умножим обе части неравенства на 6 х, получим:

440 – 2· 6 2х > 8, тогда
– 2· 6 2х > 8 – 440,
– 2· 6 2х > – 332,
6 2х < 216,
2х < 3,

x < 1,5. Наибольшее целое число из помежутка (–∞; 1,5) это число 1.

Ответ: 1 .

Пример 2 .

Решить неравенство 2 2 x – 3·2 x + 2 ≤ 0

Обозначим 2 х через у, получим неравенство у 2 – 3у + 2 ≤ 0, решим это квадратное неравенство.

у 2 – 3у +2 = 0,
у 1 = 1 и у 2 = 2.

Ветви параболы направлены вверх, изобразим график:

Тогда решением неравенства будет неравенство 1 < у < 2, вернемся к нашей переменной х и получим неравенство 1< 2 х < 2, решая которое и найдем ответ 0 < x < 1.

Ответ: (0; 1) .

Пример 3 . Решите неравенство 5 x +1 – 3 x +2 < 2·5 x – 2·3 x –1
Соберем выражения с одинаковыми основаниями в одной части неравенства

5 x +1 – 2·5 x < 3 x +2 – 2·3 x –1

Вынесем в левой части неравенства за скобки 5 x , а в правой части неравенства 3 х и получим неравенство

5 х (5 – 2) < 3 х (9 – 2/3),
3·5 х < (25/3)·3 х

Разделим обе части неравенства на выражение 3·3 х, знак неравенства не изменится, так как 3·3 х положительное число, получим неравенство:

х < 2 (так как 5/3 > 1).

Ответ: (–∞; 2) .

Если у вас возникнут вопросы по решению показательных неравенств или вы захотите попрактиковаться в решении подобных примеров, записывайтесь ко мне на уроки. Репетитор Валентина Галиневская .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Рассмотрим, как решать показательные неравенства, содержащих степени с разными основаниями. Решение таких неравенств аналогично решению соответствующих .

{5^{{x^2} - x - 1}} - {2^{{x^2} - x}}\]" title="Rendered by QuickLaTeX.com">

Группируем степени с одинаковыми основаниями. Удобнее для этого развести их по разные стороны неравенства:

Title="Rendered by QuickLaTeX.com">

Из каждой пары степеней выносим за скобки общий множитель — степень с меньшим показателем. Вынести за скобки общий множитель- значит, каждое слагаемое разделить на этот множитель. При делении степеней с одинаковыми основаниями основание оставляем прежним, а показатели вычитаем:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Делить можно сразу на 20 (20=4∙5), но практика показывает, что деление в два этапа позволяет избежать возможных ошибок:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Так как основание 2/5<1, показательная функция

убывает, поэтому знак неравенства между показателями степеней изменяется на противоположный:

Квадратичное неравенство решим методом интервалов . Нули функции, стоящей в левой части неравенства — x1=-1; x2=2. Отмечаем их на числовой прямой.

Для проверки знака возьмем нуль: 0²-0-2=-2, в промежуток, которому принадлежит нуль, ставим «-«. Остальные знаки расставляем в шахматном порядке. Так как решаем неравенство, в котором левая часть меньше нуля, выбираем промежуток со знаком «-«.

Ответ: x ∈ (-1; 2).

Вариант неравенств такого вида — все степени имеют одинаковые основания, но отличаются коэффициентами при x в показателях.

В левой части выносим за скобки степень с наименьшим показателем

Title="Rendered by QuickLaTeX.com">

Пришли к показательному неравенству . Так как основание 7>1, функция

возрастает, знак неравенства между показателями не изменяется:

Чтобы решить это неравенство методом интервалов перенесем все слагаемые в левую часть и приведём дроби к

Урок и презентация на тему: "Показательные уравнения и показательные неравенства"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 11 класса
Интерактивное пособие для 9–11 классов "Тригонометрия"
Интерактивное пособие для 10–11 классов "Логарифмы"

Определение показательных уравнений

Ребята, мы изучили показательные функций, узнали их свойства и построили графики, разобрали примеры уравнений, в которых встречались показательные функции. Сегодня мы будем изучать показательные уравнения и неравенства.

Определение. Уравнения вида: $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ называются показательными уравнениями.

Вспомнив теоремы, которые мы изучали в теме "Показательная функция", можно ввести новую теорему:
Теорема. Показательное уравнение $a^{f(x)}=a^{g(x)}$, где $a>0$, $a≠1$ равносильно уравнению $f(x)=g(x)$.

Примеры показательных уравнений

Пример.
Решить уравнения:
а) $3^{3x-3}=27$.
б) ${(\frac{2}{3})}^{2x+0,2}=\sqrt{\frac{2}{3}}$.
в) $5^{x^2-6x}=5^{-3x+18}$.
Решение.
а) Мы хорошо знаем, что $27=3^3$.
Перепишем наше уравнение: $3^{3x-3}=3^3$.
Воспользовавшись теоремой выше, получаем, что наше уравнение сводится к уравнению $3х-3=3$, решив это уравнение, получим $х=2$.
Ответ: $х=2$.

Б) $\sqrt{\frac{2}{3}}={(\frac{2}{3})}^{\frac{1}{5}}$.
Тогда наше уравнение можно переписать: ${(\frac{2}{3})}^{2x+0,2}={(\frac{2}{3})}^{\frac{1}{5}}={(\frac{2}{3})}^{0,2}$.
$2х+0,2=0,2$.
$х=0$.
Ответ: $х=0$.

В) Исходное уравнение равносильно уравнению: $x^2-6x=-3x+18$.
$x^2-3x-18=0$.
$(x-6)(x+3)=0$.
$x_1=6$ и $x_2=-3$.
Ответ: $x_1=6$ и $x_2=-3$.

Пример.
Решить уравнение: $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=16*{(0,0625)}^{x+1}$.
Решение:
Последовательно выполним ряд действий и приведем обе части нашего уравнения к одинаковым основаниям.
Выполним ряд операций в левой части:
1) ${(0,25)}^{x-0,5}={(\frac{1}{4})}^{x-0,5}$.
2) $\sqrt{4}=4^{\frac{1}{2}}$.
3) $\frac{{(0,25)}^{x-0,5}}{\sqrt{4}}=\frac{{(\frac{1}{4})}^{x-0,5}}{4^{\frac{1}{2}}}= \frac{1}{4^{x-0,5+0,5}}=\frac{1}{4^x}={(\frac{1}{4})}^x$.
Перейдем к правой части:
4) $16=4^2$.
5) ${(0,0625)}^{x+1}=\frac{1}{{16}^{x+1}}=\frac{1}{4^{2x+2}}$.
6) $16*{(0,0625)}^{x+1}=\frac{4^2}{4^{2x+2}}=4^{2-2x-2}=4^{-2x}=\frac{1}{4^{2x}}={(\frac{1}{4})}^{2x}$.
Исходное уравнение равносильно уравнению:
${(\frac{1}{4})}^x={(\frac{1}{4})}^{2x}$.
$x=2x$.
$x=0$.
Ответ: $х=0$.

Пример.
Решить уравнение: $9^x+3^{x+2}-36=0$.
Решение:
Перепишем наше уравнение: ${(3^2)}^x+9*3^x-36=0$.
${(3^x)}^2+9*3^x-36=0$.
Давайте сделаем замену переменных, пусть $a=3^x$.
В новых переменных уравнение примет вид: $a^2+9a-36=0$.
$(a+12)(a-3)=0$.
$a_1=-12$ и $a_2=3$.
Выполним обратную замену переменных: $3^x=-12$ и $3^x=3$.
На прошлом уроке мы узнали, что показательные выражения могут принимать только положительные значения, вспомните график. Значит, первое уравнение не имеет решений, второе уравнение имеет одно решение: $х=1$.
Ответ: $х=1$.

Давайте составим памятку способов решения показательных уравнений:
1. Графический метод. Представляем обе части уравнения в виде функций и строим их графики, находим точки пересечений графиков. (Этим методом мы пользовались на прошлом уроке).
2. Принцип равенства показателей. Принцип основан на том, что два выражения с одинаковыми основаниями равны, тогда и только тогда, когда равны степени (показатели) этих оснований. $a^{f(x)}=a^{g(x)}$ $f(x)=g(x)$.
3. Метод замены переменных. Данный метод стоит применять, если уравнение при замене переменных упрощает свой вид и его гораздо легче решить.

Пример.
Решить систему уравнений: $\begin {cases} {27}^y*3^x=1, \\ 4^{x+y}-2^{x+y}=12. \end {cases}$.
Решение.
Рассмотрим оба уравнения системы по отдельности:
$27^y*3^x=1$.
$3^{3y}*3^x=3^0$.
$3^{3y+x}=3^0$.
$x+3y=0$.
Рассмотрим второе уравнение:
$4^{x+y}-2^{x+y}=12$.
$2^{2(x+y)}-2^{x+y}=12$.
Воспользуемся методом замены переменных, пусть $y=2^{x+y}$.
Тогда уравнение примет вид:
$y^2-y-12=0$.
$(y-4)(y+3)=0$.
$y_1=4$ и $y_2=-3$.
Перейдем к начальным переменным, из первого уравнения получаем $x+y=2$. Второе уравнение не имеет решений. Тогда наша начальная система уравнений, равносильна системе: $\begin {cases} x+3y=0, \\ x+y=2. \end {cases}$.
Вычтем из первого уравнения второе, получим: $\begin {cases} 2y=-2, \\ x+y=2. \end {cases}$.
$\begin {cases} y=-1, \\ x=3. \end {cases}$.
Ответ: $(3;-1)$.

Показательные неравенства

Перейдем к неравенствам. При решении неравенств необходимо обращать внимание на основание степени. Возможны два варианта развития событий при решении неравенств.

Теорема. Если $а>1$, то показательное неравенство $a^{f(x)}>a^{g(x)}$ равносильно неравенству $f(x)>g(x)$.
Если $0a^{g(x)}$ равносильно неравенству $f(x)

Пример.
Решить неравенства:
а) $3^{2x+3}>81$.
б) ${(\frac{1}{4})}^{2x-4} в) ${0,3}^{x^2+6x}≤{0,3}^{4x+15}$.
Решение.
а) $3^{2x+3}>81$.
$3^{2x+3}>3^4$.
Наше неравенство равносильно неравенству:
$2x+3>4$.
$2x>1$.
$x>0,5$.

Б) ${(\frac{1}{4})}^{2x-4} ${(\frac{1}{4})}^{2x-4} В нашем уравнении основание при степени меньше 1, тогда при замене неравенства на эквивалентное необходимо поменять знак.
$2x-4>2$.
$x>3$.

В) Наше неравенство эквивалентно неравенству:
$x^2+6x≥4x+15$.
$x^2+2x-15≥0$.
$(x-3)(x+5)≥0$.
Воспользуемся интервальным методом решения:
Ответ: $(-∞;-5]U}

Рекомендуем почитать

Наверх