Частотно-фазовые детекторы. Курсовая работа: Расчет фазового детектора Фазовый детектор

Плетение кос, косичек 12.04.2023
Плетение кос, косичек

В параграфе 7.4 были рассмотрены цифровые синтезаторы с косвенным синтезом частоты, одним из главных элементов которых можно назвать фазовый дискриминатор. Аналогичные устройства применяют в любых цифровых системах фазовой автоподстройки частоты, используемых как для синтеза колебаний с постоянной частотой, так и для частотной или фазовой модуляции и демодуляции ВЧ сигналов. Параметры фазового дискриминатора определяют наивысшую рабочую частоту или частоту сравнения петли ФАПЧ, а также такие важнейшие показатели, как ширина полосы захвата и полосы удержания петли ФАПЧ.

В цифровых системах ФАПЧ, в основном, используют следующие виды фазовых дискриминаторов:

· фазовый детектор (ФД) на логическом элементе «Исключающее ИЛИ»;

· фазовый детектор на RS-триггере или JK-триггере;

· цифровой частотно-фазовый детектор (ЧФД).

Первые два типа детекторов характеризуются тем, что на их выходе присутствует постоянное напряжение, пропорциональное сдвигу фаз при равенстве частот входного и опорного сигналов, и биения, частота которых зависит от разности частот этих сигналов, если эти частоты не равны. При этом биения могут иметь в некотором диапазоне расстроек постоянную составляющую, приводящую петлю ФАПЧ в конце концов к захвату частоты входного сигнала, но при достаточно большой частотной расстройке биения становятся практически гармоническими и захват частоты является уже невозможным. Ясно, что при этом полоса захвата системы уже полосы удержания. Рисунок 7.7.1 иллюстрирует процесс захвата частоты системой ФАПЧ с ФД на логическом элементе «Исключающее ИЛИ» (показана зависимость выходного напряжения ФД от времени, полученная путем моделирования работы петли ФАПЧ на ЭВМ). В данном случае начальная расстройка частоты ГУН настолько велика, что биения выходного напряжения ФД являются чисто гармоническими и их постоянная составляющая равна нулю, т.е. ФД не оказывает подстраивающего действия на ГУН (левая часть рисунка). На ГУН подается внешнее управляющее воздействие, медленно сдвигающее его частоту к значению, при котором возможен захват его частоты петлей ФАПЧ; при этом форма биений выходного колебания ФД начинает отличаться от гармонической, появляется постоянная составляющая, оказывающая воздействие на среднее значение частоты ГУН (средняя часть рисунка). В какой-то момент частота ГУН попадает в полосу захвата петли ФАПЧ – и происходит захват: после короткого переходного процесса на выходе ФД устанавливается постоянное напряжение, пропорциональное разности фаз опорного колебания и колебания ГУН, поступающих на ФД (правая часть рисунка).

В отличие от фазовых детекторов, у частотно-фазового детектора при любых частотных расстройках на выходе нет биений, но присутствует постоянное напряжение, подстраивающее регулируемый генератор так, чтобы уменьшить эту расстройку. Таким образом, выходное напряжение ЧФД является функцией как разности фаз (в синхронном режиме), так и разности частот (в случае отсутствия синхронизма) поступающих на него колебаний. Благодаря этому в системе ФАПЧ, содержащей цифровой частотно-фазовый детектор, полоса захвата равна полосе удержания.

На рис.7.7.2 показана структура простейшего цифрового ЧФД, построенного на двух D-триггерах. Состояния их выходов определяют работу транзисторных ключей VT1, VT2 следующим образом.

Q1=1, Q2=1 - элемент «логическое И» DD3 выставляет на своем выходе логическую 1, которая через устройство задержки подается на входы CLR триггеров, сбрасывая их выходы в 0.

Q1=0, Q2=0 - оба ключа разомкнуты, выход ЧФД - в третьем состоянии.

Q1=1, Q2=0 - ключ VT1 замкнут, VT2 разомкнут, на выходе ЧФД напряжение, близкое к напряжению питания, что соответствует логической 1.

Q1=0, Q2=1 - ключ VT1 разомкнут, VT2 замкнут, на выходе ЧФД напряжение, близкое к нулю, что соответствует логическму 0.

Рассмотрим поведение схемы в случае, когда частота сигнала на Входе 1 выше частоты на Входе 2, рис.7.7.3А. Из рисунка видно, что при этом единица на выходе ЧФД будет появляться чаще, чем 0 (триггеры срабатывают по положительному фронту на синхровходе), и частота ГУН будет подтягиваться выше, к частоте опорного генератора (предполагается, что ГУН выполнен с использованием варикапа). Это будет продолжаться до тех пор, пока частоты не станут равными, что приведет к захвату частоты ГУН. В случае, когда в исходном состоянии частота ГУН значительно выше частоты опорного генератора, на выходе ЧФД будет преобладать 0, понижая частоту ГУН вплоть до ее захвата петлей ФАПЧ.

Современные ЧФД выпускаются в виде ИМС, и могут работать на частотах до 200 МГц, что позволяет их использовать в ПЧ трактах радиопередающих устройств современных стандартов связи. Они имеют средства для устранения зоны нечувствительности по фазе, расположенной в центре фазовой характеристики. Примером современной микросхемы ЧФД может послужить AD9901, структура которой представлена на рис. 7.7.4. Принципиально она отличается от рассмотренной выше (рис. 7.7.2) наличием делителей частоты входных сигналов на D-триггерах. Они обеспечивают фазовому дискриминатору, выполненному на элементе «Исключающее ИЛИ», прямоугольные колебания для улучшения его работы, а также сдвигают зону нечувствительности из центра фазовой характеристики на ее края.

Вид характеристики такого ЧФД показан на рис. 7.7.5, где видны зоны нечувствительности и нелинейности в зависимости от рабочей частоты детектора. Отметим, что на частотах в сотни кГц эта характеристика имеет линейный участок протяженностью на все 360°.

Существуют две разновидности ЧФД, различающиеся по способу построения их выходных каскадов: ЧФД с выходом по напряжению (рис. 7.7.4) и ЧФД с выходом по току; последний вариант чаще называют схемой подкачки заряда или «зарядовым насосом» (или СР - charge pump), о применении которого в схеме петли ФАПЧ уже упоминалось в параграфе 7.4. Заменив транзисторы VT1 и VT2 на рис. 7.7.2 на источники тока, как это показано на рис. 7.7.6, получаем схему ЧФД charge pump в обобщенном виде .

От того, какие импульсы – тока или напряжения - вырабатывает схема ЧФД, зависит тип подключаемого к выходу ЧФД петлевого фильтра; соответственно, различаются и характеристики всей петли ФАПЧ. На рис. 7.7.7 приведены часто встречающиеся варианты схем петлевых фильтров для «токового» и «потенциального» вариантов исполнения выходных каскадов ЧФД. Для улучшения фильтрующих свойств петлевого фильтра по отношению к импульсным помехам, проникающим с выхода ЧФД на управляющий вход ГУН, иногда применяют дополнительное фильтрующее звено (ДФЗ), элементы которого выделены на нижней схеме рисунка пунктиром. Операционный усилитель, включенный между петлевым фильтром и управляющим входом ГУН, служит буферным каскадом, уменьшающим нагрузку на фильтр со стороны входа ГУН. Сам операционный усилитель должен иметь при этом минимальный входной ток (пикоамперы) и низкий уровень собственных шумов. Напомним (см. параграф 7.4 и рис. 7.4.3), что токи утечки, возникающие в элементах (емкостях) петлевого фильтра или же ток нагрузки со стороны управляющего входа ГУН приводят к проникновению нежелательных составляющих с частотой сравнения и ее гармоник в спектр колебания ГУН.

Отдельно следует сказать о работе петли ФАПЧ, в которой применяется ЧФД с токовым выходом «charge pump», нагруженным на петлевой фильтр, в состав которого входит идеальное интегрирующее звено. В параграфе 7.4 уже было отмечено, что в этом случае петля ФАПЧ приобретает свойство астатизма, т.е. фазовая ошибка в установившемся синхронном режиме не зависит от начальной частотной расстройки ГУН относительно колебания опорного генератора и, в идеальном случае, всегда стремится к нулю. Покажем это на примере схемы, изображенной на рис. 7.7.6.

Пусть петля ФАПЧ имеет простейшую структуру, подобную изображенной на рис.7.7.3; это не снижает общности наших рассуждений. На Входе 1 ЧФД присутствует колебание опорного генератора с постоянной частотой w ОП = рj ОП (где р = d / dt – оператор дифференцирования, j ОП – линейно возрастающая полная фаза опорного колебания). На Входе 2 ЧФД присутствует, в свою очередь, колебание ГУН с частотой, зависящей от Е УПР (р) - управляющего воздействия ЧФД, передающегося через петлевой фильтр:

w ГУН = рj ГУН = w ГУН СВ. – 2pS ГУН Е УПР (р),

где j ГУН – полная фаза колебания ГУН, w ГУН СВ. – значение частоты ГУН без управляющего воздействия от ЧФД («свободное»), S ГУН – крутизна линейного участка статической модуляционной характеристики ГУН.

в этом случае характеристика детектирования представляет собой циклоиду рисунок 5 сильно отличается от косинусоиды.

2. Анализ схем построения фазовых детекторов

2.1 Балансный фазовый детектор

Балансный фазовый детектор представляет собой два диодных однотактных фазовых детекторов, каждый из которых работает на свою нагрузку.


В результате на входе каждого плеча фазового детектора создаются напряжения

встречной полярности поэтому . Входное напряжение подводится к диодам в противоположной полярности поэтому фаза напряжения Uвх` отличается от фазы Uвх`` на .

Опорное напряжение прикладываются к диодам в одинаковой фазе, поэтому,

.

Следовательно,

В кольцевом фазовом детекторе используют два балансных фазовых детектора, при этом симметричность характеристики детектирования улучшается, а коэффициент детектора возростает.

Характеристики детектирования плеч и всего ФД при

Выводы: 1. Балансный фазовый детектор- это сочетание двух однотактных фазовых детектора, каждый из которых работает на свою нагрузку и создает на них взаимно противоположные напряжения; разность этих напряжений определяют продетектированное напряжение на входе балансного фазового детектора. Полярность входных сигналов на диодах обратна, опорного напряжения – одинакова.

2.Характеристика детектирования балансого фазового детектора по сравнению с однотактным более симметрична и проходит через нуль.

2.2 Фазовый детектор на логических дискретных элементах

Структурная схема фазового подобного детектора показана на рисунке (8)


Устройство формирования преобразует аналоговый гармонический сигнал в импульсное напряжение.

Возможная схемная реализация такого фазового детектора показана на рисунке (8). Детектор имеет два входа: на первый подается ФМ - колебание (рис.9,а), на второй – опорное напряжение (рис. 9,в). В качестве УФ 1 и УФ 2 (рис.11) использованы компараторы с гистерезисом DA 1 иDA 2 . Диаграммы напряжений u 1 и u 2 на выходе УФ 1 и УФ 2 показаны на рис.(9,б,г) . Напряжения u 1 и u 2 подаются на цепь И, в качестве которой используются два логических элемента И-НЕ DD1.3 и DD1.4. Напряжение u на выходе цепи И создается только при одновременном действии напряжений u 1 и u 2 . Диаграмма напряжения на выходе цепи И показана на рисунке (9,д). Фильтр нижних частот выделяет постоянную составляющую напряжения Е д = U 0 | π – φ | / 2 π = 0,5 U 0 | 1 – φ/ π| (4) ;


Согласно(4) напряжение Е д линейно зависит от фазы φ. Характеристика детектирования ФД показана на рис. (12)

Если на рисунке (10) вместо цепи И использовать цепь на основе элементов исключающее И-НЕ рис. (11), то характеристика детектирования становится в 2 раза круче и при равенстве фаз входного и опорного напряжений Е д = 0.

Напряжение u на выходе цепи И, состоящей из элементов И-НЕ, имеет место при одновременном наличии либо отсутствии напряжений u 1 и u 2 .


ВЫВОД: В ФД на логических дискретных элементах ФМ – колебание преобразуется в импульсное напряжение, скважность которого зависит от фазы входного сигнала. Импульсный ФД реализуется в интегральном исполнении.

2.3 Однократный диодный ФД

Для фазового детектирования к диоду прикладывается входной сигнал и опорное напряжение; напряжение Е д на выходе ФД определяется выражением

,полученным при предположении, что U nx <Характеристики детектирования диодного ФД согласно этого выражения близка к синусоиде.

Принцип действия такого ФД можно пояснить, рассматривая его не как параметрическую цепь, а как систему с амплитудным детектированием суммы двух гармонических колебаний (u BX и u 0).

На входе такого АД действует суммарное напряжение:

u ∑ = u вх + u 0 =U BX cos (ω 0 t + ψ) + U 0 cos ω 0 t. (5);

Эти два колебания имеют одинаковую частоту, но разные фазы. В результате векторного сложения двух напряжений получают напряжение той же частоты, но другой фазы. Амплитуда суммарного колебания:


2.4 Коммутаторный фазовый детектор

Такой фазовый детектор выполнен в виде балансного перемножающего устройства с дифференциальным входом. Входной сигнал U 1 подается на базу транзистора Т 1 , сигнал управляющего напряжения U 2 подается непосредственно на затвор полевого транзистора Т 3 . Последний работает как управляемый напряжением аттенюатор с нулевым смещением на участке исток-сток. Вследствие баланса цепи по постоянному току управляющее напряжение, приложенное к затвору Т 3 , изменяет только сопротивление накала полевого транзистора, не влияя на условие передачи постоянных смещений в цепи. При использовании рассмотренной балансной схемы рис (14), перемножителя в спектре выходного напряжения удается значительно ослабить составляющую частоты

2 и все комбинационные составляющие, за исключением ω 2 ±ω 1 . Составляющие частоты ω 1 при этом из спектра не исключаются. Однако при выполнении условия ω 1 -ω 2 ≤ω 1 ее влияние почти не сказывается, так как она будет подавлена фильтром, стоящим после фазового детектора. Допуская,что участок затвор –канал имеет безконечное сопротивление и что амплитуда напряжения сигнала U 1 значительно меньше напряжения отсечки полевого транзистора, можно показать что коэффициент передачи передачи фазового детектора для симметричного выхода может быть выражен в следующем виде:

Где S нач - начальная крутизна полевого транзистора Т 3 при (U зи =0);

U зи.отс - напряжение отсеки Т 3 ;

R н - сопротивление нагрузки каждого плеча схемы;

U 2 - амплитуда управляющего напряжения на затворе.

Входное сопротивление схемы на частоте сигнала определяя ется велечиной разных сопротивлений R 1 R 2 и имеет порядок

.

Максимально возможный коэффициент такого фазового детектора при условии U 2 =0.5U зи.отс определяется выражением:



3.Выбор и обоснование схемы фазового детектора

В устройствах для приема сигналов с фазовой модуляцией, в системах фазовой автоподстройки частоты, а также в ряде других автоматических устройств необходимо получать напряжение, амплитуда которого определяется сдвигом фаз между двумя колебаниями. Получить такое напряжение можно с помощью фазовых детекторов (ФД).

Как и в других детекторах, важнейшей характеристикой ФД является детекторная характеристика. Она представляет собой зависимость амплитуды выходного напряжения от разности фаз между напряжением сигнала и опорным напряжением. Опорное напряжение имеет частоту, равную частоте сигнала, и постоянную фазу, относительно которой отсчитывается фаза сигнала. Одним из основных требований, предъявляемых к детекторной характеристике, является ее линейность на рабочем участке. Линейность детекторной характеристики необходима для обеспечения минимальных нелинейных искажений, вносимых ФД.

В простейшем ФД напряжение сигнала U c и опорное напряжение U оп последовательно складываются, а сумма напряжений U 𝛴 подается на амплитудный детектор. Как известно, при сложении двух синусоидальных напряжений одинаковой частоты амплитуда суммарного напряжения U 𝛴 зависит от сдвига фаз φ (рисунок 6.3). Другими словами, суммарное напряжение оказывается промодулированным по амплитуде по закону фазовой модуляции сигнала:

где U 𝛴 - амплитуда суммарного напряжения;U оп - амплитуда опорного напряжения; U c - амплитуда сигнала; φ - угол сдвига фаз между сигналом и опорным напряжением, изменяющийся по закону модулирующего сигнала.

Амплитудно-модулированное напряжение обычным образом детектируется амплитудным детектором. Детекторная характеристика будет описываться выражением

где- коэффициент передачи амплитудного детектора.

Возможная схема простейшего ФД представлена на рисунке 2.4. Детекторная характеристика показана на рисунке 2.5.

Как следует из рисунка 2.5, в пределах небольших участков АВ и CD детекторную характеристику можно считать линейной.

Для того чтобы расширить линейный участок зависимости U вых (φ) и сделать ее симметричной относительно отклонения фазы от некоторого начального значения, применяют балансный ФД, схема которого представлена на рисунке 2.6.

Рисунок 2.1 – Сложение двух синусоидальных напряжений одинаковой частоты

Рисунок 2.2 – Схема фазового детектора

Рисунок 2.3 – Детекторная характеристика фазового детектора

Рисунок 2.4 – Схема балансного фазового детектора

Напряжение детектируемого сигнала U c подводится с помощью трансформатора Т к диодам VD1 и VD2 со взаимно противоположными фазами, т. е. напряжения U" c и U" c противофазны. Опорное напряжение U оп подводится к диодам в одинаковой фазе. Как следует из рис. 7.36, балансный ФД представляет собой сочетание двух простейших ФД, показанных на рис. 7.34. Выходные напряженияU" вых иU" вых имеют взаимно противоположные знаки, а общее выходное напряжение равно разности напряжений U" вых иU" вых.



Полагая коэффициенты передачи детекторов на диодах VD1 иVD2 одинаковыми и равными K д, получаем

Характеристика проходит через 0 при φ=90° и φ=270° (рисунок 5.7). Полярность выходного напряжения зависит от знака отклонения фазы φ.

Степень линейности характеристики зависит от соотношения амплитуд напряжений U оп иU c . Наилучшая линейность получается приU оп =U c . В этом случае

Еще меньшие нелинейные искажения можно получить в кольцевом балансном ФД, схема которого показана на рисунке 6.8.

Рисунок 2.5 – Детекторная характеристика балансного фазового детектора

Рисунок 2.6 – Схема кольцевого балансного фазового детектора

Из сравнения схем на рисунке 6.6 и рисунке 6.8 следует, что кольцевой детектор состоит из двух обычных балансных, работающих на общую нагрузку. В кольцевом балансном детекторе токи четных гармоник от каждого из двух балансных детекторов в нагрузке протекают навстречу друг другу и при полной симметрии схемы взаимно компенсируются. За счет этого и достигается меньший уровень нелинейных искажений.

Схему фазового детектора, показанную на рис. 7.3, нельзя отнести к схемам типа демодулятора, как две предыдущие схе­мы. Эта схема детектирует разность фаз двух сигналов, так что при наличии разности фаз могут быть приняты определенные меры по корректированию (см. разд. 4.6, 6.6, 6.7, 15.2 и 15.3). Фазовый детектор часто называют также фазовым дискрими­натором или частотным компаратором. Схема фазового детек­тора, показанная на рис. 7.3, близка к схеме дискриминатора (демодулятора) ЧМ-сигналов, изображенного на рис. 7.5, а их основные рабочие характеристики практически идентичны. Поэтому анализ схемы, данный в этом разделе, применим и к схе­ме, показанной на рис. 7.5. В демодулирующей системе (рис. 7.5) индуктивность L 4 связана с L b т. е. она не является вторичной обмоткой трансформатора L 4 L 5 , как это имеет место в схеме, изображенной на рис. 7.3.

Рис. 7.3. Фазовый детектор.

Рис. 7.4. Векторные диаграммы фазового детектора.

Подлежащий анализу сигнал прикладывается к входной обмотке li и трансформируется во вторичную обмотку, состоя­щую из L 2 - L 3 . Вторичная обмотка шунтируется конденсато­ром переменной емкости С ь благодаря чему образуется парал­лельный резонансный контур, настроенный на частоту контроль­ного (опорного) сигнала, который прикладывается к первичной обмотке L 5 трансформатора и наводится на L 4 .

Если оба сигнала имеют идентичные частоты, то при хоро­шей балансировке системы прикладываемые к диодам сигналы одинаковы. В этом случае токи диодов протекают в направле­ниях, показанных на рис. 7.3 стрелками, создавая выпрямлен­ный сигнал. Каждый диод проводит через полупериод, вследст­вие чего через диоды протекают пульсирующие токи. Однако пульсации напряжения на резисторах Ri и R 2 сводятся к мини­муму благодаря фильтрующему действию конденсаторов С 2 и С 3 , так что через Ri и R 2 протекают практически постоянные токи. Вследствие использования центрального отвода в обмотке L 2 - L 3 и равенства резисторов R 1 и R 2 падения напряжений на этих выходных резисторах равны и противоположны по зна­ку; поэтому при равенстве частот сигналов выходное напряже­ние равно нулю.

Работу схемы легче всего понять из анализа фазовых соот­ношений в рассматриваемом компараторе. На векторной диаг­рамме, приведенной на рис. 7.4, а, показаны соотношения фаз напряжений при равенстве частот обоих входных сигналов, ког­да входной колебательный контур находится в состоянии резо­нанса. В этом случае действующая в контуре индуцированная э д. с. E инд изменяется в фазе с током I к, протекающим через элементы (активные и реактивные) контура. Такое положение обусловлено тем, что при резонансе реактивное емкостное со­противление контура равно по величине и обратно по знаку ин­дуктивному реактивному сопротивлению контура; эти сопротив­ления компенсируются, так что контур имеет лишь активное сопротивление. Поэтому между з. д. с., действующей в контуре, и током контура нет ни опережения, ни отставания.

Напряжение опорного сигнала E L ± на вторичной обмотке L 4 . сдвинуто по фазе на 180° относительно индуцированной э.д. с,. E ИНД. Поэтому E L 4 показано на рис. 7.4, а в виде вектора, на­правленного противоложно вектору Е инл.

Поскольку катушка L 4 связана с входом и выходом систе­мы, каждый диод подвержен воздействию двух сигналов: опор­ного и входного. Однако общее напряжение на каждом диоде является не арифметической, а векторной суммой напряжений сигналов. Это объясняется тем, что падение напряжения E L на нижней половине вторичной обмотки, отсчитываемое от сред­ней точки этой обмотки, опережает на 90° ток 1 К, протекающий через эту часть обмотки, по этой же причине падение напряже­ния E L 2 на верхней половине вторичной обмотки, также отсчи­тываемое от средней точки этой обмотки, должно отставать от вектора I к на 90°; таким образом, при резонансе напряжение?д э на диоде Д1 равно векторной сумме E L 4 и E L 2 , а напряжение Eд 2 на диоде Д 2 равно векторной сумме E L 4 и E L 3 , Напряже­ния Eд х и Eд 2 показаны на рис. 7.4, а в виде диагоналей па­раллелограммов.

Если входной сигнал на L 1 отличается от опорного сигнала на L 5 , то фазовые соотношения сигналов в рассматриваемом компараторе изменяются, в результате чего один из диодов про­водит лучше другого. Поэтому падение напряжения на одном из выходных резисторов становится больше падения напряже­ния на другом резисторе и их суммарное падение напряжение перестает быть равным нулю, причем его величина и полярность зависят от разности этих падений напряжений.

При изменении частоты входного сигнала колебательный контур (L 2 - L 3)C 1 выходит из резонанса и ток I к во вторичноГс обмотке не изменяется в фазе с э.д. с. E HHR . Это объясняется тем, что колебательный контур на частоте выше или ниже резо­нанса имеет индуктивное или емкостное сопротивление. Если ток отстает от э.д.с. E ИНД, то векторная диаграмма принимает вид, показанный на рис. 7.4,6. Но между I к и E L 2 или E L 3 со­храняется разность фаз, равная 90°. В результате этого напря­жение на диоде Д1 увеличивается, а на диоде Д 2 уменьшается, В этом случае диоды проводят неодинаково, и на выходе ком-ларатора появляется напряжение.

Изменение частоты входного сигнала в другом направлении приводит к увеличению?д 2 и уменьшению?д х. Появляется выходное напряжение, полярность которого противоположна полярности напряжения, образующегося в предыдущем случае.

Входное напряжение ФД определяется разностью фаз между входным и опорным колебаниями.

Так же как и в случае преобразования частоты математической основой ФД является перемножение сигналов входного и опорного. Поэтому схемотехника ФД похожа на схемотехнику смесителей, отличия заключается лишь в фильтре который выделяет выходное напряжение. На выходе ФД устанавливают ФНЧ, в то время как в смесителе ПФ. Различают 2 основных способа построения ФД векторно-мерного типа и коммутационного типа.

Выход ФД определяется разностью вых. напряжений 2-х АД (ампл. детектор) на диодах VD1 и VD2 по выходу они (АД) включены встречно. На вход каждого АД поступает сумма сигнального и опорного колебаний. Uвых=Кад(Uvd1-Uvd2)

Проанализируем работу ФД с помощью векторной диаграммы:

Найдем Uvd1 из геометрических построений

С целью упрощения анализа считаем Uc<

Для получения аналитического выражения воспользуемся разложением в ряд функции квадратного корня.

;

Пользуясь аналогичными рассуждениями и учитывая что угол φ2 является положительным записываем

Uвых=Кад(Uvd1-Uvd2)=Кад()=Кад

Uo>>Uc Uвых=КадUccos φ

Линейная зависимость выходного напряжения от сдвига фаз наблюдается в узком диапазоне сдвига фаз (область п/2). Нулевое значение напряжения соответствует сдвигу фаз п/2. При очень большом напряжении сигнала ставиться ключ.

В выражении для выходного напряжения отсутствует выражение для Uo => от опорного напряжения не зависит эффект детектирования если опорное напряжение велико с физической точки зрения при большом значении Uo диоды ведут себя как электронные ключи, поэтому независимо от уровня опорного напряжения ключ может находиться в открытом или закрытом состоянии => в схеме диоды заменяют на электронные ключи – осуществляется переход к схеме коммутационного ФД.

Опорный сигнал в виде последовательных импульсов управляет электронными ключами, сигнальные колебания поступают на сигнальные входы ключей в противофазе (так же как и в предыдущей схеме) вых. напряжение выделяется с помощью ФНЧ. Покажем что зависимость Uвых от сдвига фаз φ имеет такой же вид что и детекторная характеристика предыдущей схемы.

При φ=0 постоянная составляющая токов i1 и i2 принимает макс значение, поэтому макс значение принимает Uвых т.к. именно постоянная составляющая выделяется на выходе схемы.

При φ=п\2 i1 и i2=0 => Uвых=0

Результаты анализа соответствуют ФД предыдущей схемы.
Коммутационная схема проще реализуется в микросхемном но имеет меньшее быстродействие по сравнению с векторно-мерной.

38. Частотные детекторы (ЧД)

ЧД как и ФД(фазовый детектор) является детектором угловой модуляции для всех детекторов данного класса необходимо обеспечить постоянство уровня детектирования сигнала на входе детектора, поэтому как правило сигнал перед угловым детектированием пропускают через амплитудное детектирование, либо применяют спец схемы которые не чувствительны к изменению уровня входного сигнала.

ЧД строятся по одному из 3х принципов:

1. Вх сигнал предварительно преобразуется в АМ сигнал, а затем осуществляется его амплитудное детектирование. Закон АМ(амплитудной модуляции) соответствует ЧМ.

2. Вх сигнал преобразуется в фазово-модулированный после чего осуществляется фазовое детектирование.

3. Вх сигнал преобразуется в импульсный после чего осуществляется обработка импульсного сигнала.

ЧД с промежуточным преобразованием промежуточного сигнала в Амодулированный.

Детектор содержит линейный 4х полюсник. АЧХ которого должна быть линейной.

Т.к. контур расстроен относительно центральной частоты сигнала то Uвых контура меняется во времени по амплитуде.

Достоинства: низкая стоимость.

Недостатки: большие нелинейные искажения, с целью их уменьшения используют балансные схемы где вместо 1 контура применяется 2 АД

Колебательные контуры расстроены симметрично относительно центральной частоты спектра сигнала. Uвых схемы является разностью выходных напряжений АД VD1 и VD2

Меняя частоты настройки колебательных контуров и их добротности можно обеспечить более высокую степень линейности по сравнению с предыдущей схемой. Недостатком является сложная регулировка.

ЧД с промежуточным преобразованием сигнала в фазомодулированный

Здесь ЧД содержит линейны 4х полюсник ФЧХ которого линейна.

Линия задержки φ=ωτ обладает линейной ФЧХ.

Для получения высокой крутизны преобразования изменение частоты в изменение фазы, необходимо иметь большую величину задержки.

Т.к. реализация линии задержки с большой τ затруднительна то используют аппроксимирующие 4х полюсники.

Если мгновенная частота сигнала совпадает с частотой настройки контура то сдвиг фазы вносимой в контур равен нулю то в этом случае на ФД поступают 2 колебания со сдвигом фаз на 90 градусов. => выходное напряжение ФД равно нулю.

При изменении частоты вх сигнала по отношению к частоте настройки контура появляется дополнительный сдвиг фазы, что отражается в выходном напряжении ФД.

В полосе пропускания колебательный контур ведет себя как линия задержки.

Нелинейные искажения меньше т.к. ФЧХ имеет большую степень линейности чем АЧХ контура. (ну и тупняк)

ЧД с импульсным преобразованием сигнала

Есть несколько вариантов построения ЧД. Например по принципу электронно-счетного частотомера.

Рассмотрим простейший вариант реализации схемы:

Чем выше частота следования коротких импульсов (длительность и амплитуда постоянны) тем больше составляющая этой последовательности, которая выделяется ФНЧ.

Достоинства: малое нелинейное искажение.

Недостатки: малое быстродействие, малый частотный диапазон.

39 Воздействие помех на ЧД. Схемы порогопонижения.

Простейшая ситуация когда и помеха и сигнал не модулированы когда помеха меньше сигнала.

Т.к. воздействие помех на сигнал приводит к тому что суммарный вектор Uвх детектора отличается от вектора сигнала и по величине и по фазе (т.к. устанавливаются амплитудные ограничители изменения уровня вх. сигнала), можно при анализе не учитывать, рассмотрим изменение фазы вх. сигнала φ.

φ = , Uп<

Определим то изменение по частоте, которое вносится в сигнал на линии помехи.



Рекомендуем почитать

Наверх